monai
medical
katielink's picture
adapt to BundleWorkflow interface and val metric
80ed565
{
"validate#postprocessing": {
"_target_": "Compose",
"transforms": [
{
"_target_": "Activationsd",
"keys": "pred",
"softmax": true
},
{
"_target_": "Invertd",
"keys": [
"pred",
"label"
],
"transform": "@validate#preprocessing",
"orig_keys": "image",
"meta_key_postfix": "meta_dict",
"nearest_interp": [
true,
true
],
"to_tensor": true
},
{
"_target_": "AsDiscreted",
"keys": [
"pred",
"label"
],
"argmax": [
true,
false
],
"to_onehot": 105
},
{
"_target_": "SaveImaged",
"_disabled_": true,
"keys": "pred",
"meta_keys": "pred_meta_dict",
"output_dir": "@output_dir",
"resample": false,
"squeeze_end_dims": true
}
]
},
"validate#handlers": [
{
"_target_": "CheckpointLoader",
"load_path": "$@ckpt_dir + '/model.pt'",
"load_dict": {
"model": "@network"
}
},
{
"_target_": "StatsHandler",
"iteration_log": false
},
{
"_target_": "MetricsSaver",
"save_dir": "@output_dir",
"metrics": [
"val_mean_dice",
"val_acc"
],
"metric_details": [
"val_mean_dice"
],
"batch_transform": "$monai.handlers.from_engine(['image_meta_dict'])",
"summary_ops": "*"
}
],
"initialize": [
"$setattr(torch.backends.cudnn, 'benchmark', True)"
],
"run": [
"$@validate#evaluator.run()"
]
}