{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5560ce6580>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678610377305932389, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAALNhx72FY9W5kvjKuhpAv7VY79C5UhrpOQAAgD8AAIA/xkhavkNRCT191sE4Imect8Gnnr7hjxq4AACAPwAAgD/ahs09hbPZub3KtLvBhp04jXOtuyBiyDgAAAAAAACAPzpwNz4KEEC7ugT+OvYT4Ldry6+8XmgUugAAgD8AAIA/kDlxvn4kiz6Hz8o9Lnl3vo2/tTtSPkC9AAAAAAAAAAAz7bW9CqdguXtvl7kxxK+0voCvOgUctTgAAIA/AACAP5rdhzvDEWa6KLbTujKLU7YaYX06Mij0OQAAgD8AAIA/RhmiPnqcOr0rSLg7khuGunlxir6L53c2AACAPwAAAABN4bE9UqDBuTE0hLnbz522Umiouk8TizgAAIA/AACAPxom0j243ps49C4ItzrS/7FI3bk7zuYoNgAAgD8AAIA/+m4VvlKQg7l4WWa55PsJNeV+rLpLh4Q4AACAPwAAgD9tW4a+n1mXPJysRLtmqp45fr8ZvtAifDoAAIA/AACAP4D5Lb3hEoS6+AtsuON277OAF/o6G+aFNwAAgD8AAIA/zdRPvVLYzrkeCJw7IYFKOPny27umfIa4AACAPwAAgD8AwZs9w/EfugU4eTpTO5A2SACouuYwkrkAAIA/AACAPzOQrb0pcDq6XTyAO0uLBzbwANe6uMqTugAAgD8AAIA/zQFjPuwR1bu62bi5GfEtN3lJQr3lzdc4AACAPwAAgD8zM3A64XSsug6OKrhpsByzcfPbOZdwQzcAAIA/AACAP5rPjDxc2wa6xq9iOhvPyzV8w246xGWDuQAAgD8AAIA/miFAvOyRlLn6Bc67hUouNoKq7jvYG6S1AACAPwAAgD+zrC++V3t5PFjFSjtkv7m51h4Bvr4ytzoAAIA/AACAP1qOlz3hPoi6VdCuOq9PHzajM+o6ZvrHuQAAgD8AAIA/AG3FPSmAUbrOgHM3rtpEtjLNR7tyCoK2AACAPwAAgD9NIqq9KTBKuk7qcTlvZHqz+lJzukzoi7gAAIA/AACAP0Dz2j0pKAe6m742O3UhmjeUXos7H6gQugAAAAAAAIA/mr/PPfaAYbpgRh22q/9AseO5BDv0skM1AACAPwAAgD/ajIE+PVMYPJBblboiJ3O4fdqjPeLorjkAAIA/AACAP0bmhr54x4Y8WzxAOjULirgjdxK+vtJpuQAAgD8AAIA/zfoUvcMpG7py7Ja6VY+StQVQOTuOFLQ5AACAPwAAgD/NCxg+pPB5OJffrzY7PBEzaqI/PDiW0bUAAIA/AACAPxpiJL623xK8RIYwOodDCzjSoog9+GFduQAAgD8AAIA/M8g7vfZgV7r7QRo4s/USM+m49roVvTW3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUirhCb3VWkCUhpRSlIwBbJRN6AOMAXSUR0CbThXQtz0ZdX2UKGgGaAloD0MIyjFZ3H8QY0CUhpRSlGgVTegDaBZHQJtQTu8brC51fZQoaAZoCWgPQwgt6/6xkO1gQJSGlFKUaBVN6ANoFkdAm1GUKu0TlHV9lChoBmgJaA9DCB+DFafaEGJAlIaUUpRoFU3oA2gWR0CbVKDxb0OFdX2UKGgGaAloD0MI6zU9KCjOYUCUhpRSlGgVTegDaBZHQJtUyNm16Vt1fZQoaAZoCWgPQwi05zI1CQthQJSGlFKUaBVN6ANoFkdAm1VgDNhVl3V9lChoBmgJaA9DCPmjqDN3PmRAlIaUUpRoFU3oA2gWR0CbWThWHUMHdX2UKGgGaAloD0MIs3xdhv/eYECUhpRSlGgVTegDaBZHQJtZOQ6p5u91fZQoaAZoCWgPQwgFiljEMKRkQJSGlFKUaBVN6ANoFkdAm1r33xnWa3V9lChoBmgJaA9DCNXNxd/2eGBAlIaUUpRoFU3oA2gWR0CbXAHIZIhAdX2UKGgGaAloD0MIaOp1i0DNakCUhpRSlGgVTSUDaBZHQJtgMSSNfgJ1fZQoaAZoCWgPQwgi/fZ1YIxiQJSGlFKUaBVN6ANoFkdAm2Cv6GgzxnV9lChoBmgJaA9DCOrouBpZsmRAlIaUUpRoFU3oA2gWR0CbYqK+SKWLdX2UKGgGaAloD0MI8MFrlzauXUCUhpRSlGgVTegDaBZHQJtiuDf3vhJ1fZQoaAZoCWgPQwhhHFw65r1cQJSGlFKUaBVN6ANoFkdAm2YneWOZLXV9lChoBmgJaA9DCJWAmIQLO2RAlIaUUpRoFU3oA2gWR0CbaCtVJcxCdX2UKGgGaAloD0MI1uQpq+kgW0CUhpRSlGgVTegDaBZHQJtuM79ycTd1fZQoaAZoCWgPQwjRWzy8531gQJSGlFKUaBVN6ANoFkdAm3WkBfa6BnV9lChoBmgJaA9DCIFB0qdVIFRAlIaUUpRoFU3oA2gWR0Cbdy8kD6nBdX2UKGgGaAloD0MIcQD9vn8zXECUhpRSlGgVTegDaBZHQJt4cIt16mh1fZQoaAZoCWgPQwjwFd16TR8VQJSGlFKUaBVN6ANoFkdAm3rTzND+i3V9lChoBmgJaA9DCAStwJDVUWBAlIaUUpRoFU3oA2gWR0CbfL/cFhXsdX2UKGgGaAloD0MIJF8JpESSZUCUhpRSlGgVTegDaBZHQJuBI61b7j11fZQoaAZoCWgPQwhUVz7L83NjQJSGlFKUaBVN6ANoFkdAm4Lulj3Eh3V9lChoBmgJaA9DCAdeLXdmoGVAlIaUUpRoFU3oA2gWR0Cbhxl3yI56dX2UKGgGaAloD0MIm6xRD9EoU0CUhpRSlGgVTegDaBZHQJuOMxubZvl1fZQoaAZoCWgPQwgs8BXd+l9iQJSGlFKUaBVN6ANoFkdAm5HBxPwd83V9lChoBmgJaA9DCCnN5nEY+GtAlIaUUpRoFU3HA2gWR0Cbk/wb2lEadX2UKGgGaAloD0MIymsldBfOYECUhpRSlGgVTegDaBZHQJuYZJ5E+gV1fZQoaAZoCWgPQwieflAXqXNhQJSGlFKUaBVN6ANoFkdAm5yWP1ct5HV9lChoBmgJaA9DCILhXMMM4GJAlIaUUpRoFU3oA2gWR0CbpPtwaR6odX2UKGgGaAloD0MIJvxSP2+CT0CUhpRSlGgVS9xoFkdAnIw9SIgvDnV9lChoBmgJaA9DCJc2HJYGkExAlIaUUpRoFU0OAWgWR0CcjMIsiB5HdX2UKGgGaAloD0MIvTeGAODUVUCUhpRSlGgVTegDaBZHQJyO4sz2vjh1fZQoaAZoCWgPQwiwy/CfbkRbQJSGlFKUaBVN6ANoFkdAnJUPKyOaOXV9lChoBmgJaA9DCKtdE9Ka0mRAlIaUUpRoFU3oA2gWR0CcloFGoaUBdX2UKGgGaAloD0MIlSnmIOhHZECUhpRSlGgVTegDaBZHQJyXSw6hg3N1fZQoaAZoCWgPQwiERUWczoNgQJSGlFKUaBVN6ANoFkdAnJklEJBw/HV9lChoBmgJaA9DCK2m64muimJAlIaUUpRoFU3oA2gWR0CcmT2aDwpfdX2UKGgGaAloD0MIGmzqPCrGYkCUhpRSlGgVTegDaBZHQJyZnzCk43p1fZQoaAZoCWgPQwioHmlwW8NbQJSGlFKUaBVN6ANoFkdAnJzEyLyc1HV9lChoBmgJaA9DCL+1EyUhk15AlIaUUpRoFU3oA2gWR0CcnMOrQw9JdX2UKGgGaAloD0MI+z4cJERvYkCUhpRSlGgVTegDaBZHQJyeWdOIqLF1fZQoaAZoCWgPQwheMLjmjohaQJSGlFKUaBVN6ANoFkdAnJ9OYc/+sHV9lChoBmgJaA9DCO0PlNv2pm5AlIaUUpRoFU1BAWgWR0Ccox+DOC5FdX2UKGgGaAloD0MIuRgD6zjPZECUhpRSlGgVTegDaBZHQJylCK1og3d1fZQoaAZoCWgPQwjzOXe7XnJiQJSGlFKUaBVN6ANoFkdAnKW8dLg4wXV9lChoBmgJaA9DCGjmyTWFQmtAlIaUUpRoFU3XAmgWR0Ccp0AUL2HtdX2UKGgGaAloD0MIAU2EDU8bXkCUhpRSlGgVTegDaBZHQJyoOBNEgGN1fZQoaAZoCWgPQwj5nSYz3ppjQJSGlFKUaBVN6ANoFkdAnKhVGoaUA3V9lChoBmgJaA9DCIV3uYjvLmJAlIaUUpRoFU3oA2gWR0CcrQ2h7E5ydX2UKGgGaAloD0MI3C+frJhuYkCUhpRSlGgVTegDaBZHQJyvvuTibUh1fZQoaAZoCWgPQwix+bg2VHxgQJSGlFKUaBVN6ANoFkdAnLXn13+uNnV9lChoBmgJaA9DCNbFbTQAbGVAlIaUUpRoFU3oA2gWR0CcvKXmeUY9dX2UKGgGaAloD0MIjliLT4FUZ0CUhpRSlGgVTegDaBZHQJy+BTuOS4h1fZQoaAZoCWgPQwg7inPU0fJvQJSGlFKUaBVNNQNoFkdAnL6Rfv4M4XV9lChoBmgJaA9DCDlGskeobT5AlIaUUpRoFU0aAWgWR0CcvtOx0MgEdX2UKGgGaAloD0MIAz4/jJARYECUhpRSlGgVTegDaBZHQJy/KF/QSjB1fZQoaAZoCWgPQwh15bM8j9FgQJSGlFKUaBVN6ANoFkdAnMMUGeMAFXV9lChoBmgJaA9DCDbJj/iVe2JAlIaUUpRoFU3oA2gWR0Ccxp7r9l3AdX2UKGgGaAloD0MI/gsEATL3Y0CUhpRSlGgVTegDaBZHQJzH0wfyPMl1fZQoaAZoCWgPQwjHE0Gch6hjQJSGlFKUaBVN6ANoFkdAnMptFrl/6XV9lChoBmgJaA9DCG5S0Vh73mJAlIaUUpRoFU3oA2gWR0Cc0XUMG5c1dX2UKGgGaAloD0MIUfUrnY89ZkCUhpRSlGgVTegDaBZHQJzdVWcSXdF1fZQoaAZoCWgPQwjFHAQdrR5AwJSGlFKUaBVL92gWR0Cc7/tdRiw0dX2UKGgGaAloD0MIQ8ajVMJsXkCUhpRSlGgVTegDaBZHQJz0PJcPe551fZQoaAZoCWgPQwhnRGlv8HFlQJSGlFKUaBVN6ANoFkdAnPS9h/iHZnV9lChoBmgJaA9DCJYmpaDbnGFAlIaUUpRoFU3oA2gWR0Cc9q8/lhgFdX2UKGgGaAloD0MIPGh23dvCYkCUhpRSlGgVTegDaBZHQJz8ebRWtEJ1fZQoaAZoCWgPQwgaTwRxnpBgQJSGlFKUaBVN6ANoFkdAnP3iGWUr1HV9lChoBmgJaA9DCAQhWcAEQmNAlIaUUpRoFU3oA2gWR0Cc/qbqyGBXdX2UKGgGaAloD0MIf0xr09hNZUCUhpRSlGgVTegDaBZHQJ0Akwwj+rF1fZQoaAZoCWgPQwhIh4cwfhpgQJSGlFKUaBVN6ANoFkdAnQCr5Ec81XV9lChoBmgJaA9DCOnxe5t+SmJAlIaUUpRoFU3oA2gWR0CdAQxmTTvzdX2UKGgGaAloD0MIbK8FvTdXZECUhpRSlGgVTegDaBZHQJ0EQ2n889x1fZQoaAZoCWgPQwgUz9kCwmtiQJSGlFKUaBVN6ANoFkdAnQRCLdepoHV9lChoBmgJaA9DCIVDb/HwLWVAlIaUUpRoFU3oA2gWR0CdBqDZUT+OdX2UKGgGaAloD0MIgPRNmoazcECUhpRSlGgVTb0CaBZHQJ0HI8jiXIF1fZQoaAZoCWgPQwivsUtUb2lgQJSGlFKUaBVN6ANoFkdAnQgaC17Y03V9lChoBmgJaA9DCDZzSGqhqGRAlIaUUpRoFU3oA2gWR0CdDiRRdhRZdX2UKGgGaAloD0MIHT1+b9NuXkCUhpRSlGgVTegDaBZHQJ0O5+DvmYB1fZQoaAZoCWgPQwjbT8b4MBtjQJSGlFKUaBVN6ANoFkdAnRCXwob4rXV9lChoBmgJaA9DCHVVoBaDqGVAlIaUUpRoFU3oA2gWR0CdEazp5eJIdX2UKGgGaAloD0MIsYaL3FM9ZkCUhpRSlGgVTegDaBZHQJ0RzfaYeDF1fZQoaAZoCWgPQwjKiAtAIx5wQJSGlFKUaBVNzQNoFkdAnRN74Ju2qnV9lChoBmgJaA9DCEme6/tw82lAlIaUUpRoFU0cA2gWR0CdFTVHFxXGdX2UKGgGaAloD0MI/IwLB0KIYkCUhpRSlGgVTegDaBZHQJ0ZqTNdJJ51fZQoaAZoCWgPQwjeAZ60cMdHQJSGlFKUaBVL/2gWR0CdHfCIDYAbdX2UKGgGaAloD0MIfxXgu80bLECUhpRSlGgVS/xoFkdAnR4yGrS3LHV9lChoBmgJaA9DCHfbhea6ZGFAlIaUUpRoFU3oA2gWR0CdIYqLjxTbdX2UKGgGaAloD0MIukvirAhbcECUhpRSlGgVTYACaBZHQJ0oDtgKF7F1fZQoaAZoCWgPQwhBu0OKgfhjQJSGlFKUaBVN6ANoFkdAnStvgm7aqXV9lChoBmgJaA9DCCJS0y6mK1VAlIaUUpRoFU3oA2gWR0CdLDfzSThYdX2UKGgGaAloD0MID5iHTPmSYECUhpRSlGgVTegDaBZHQJ0si5d4Vyp1fZQoaAZoCWgPQwil3H2OjydxQJSGlFKUaBVN3gNoFkdAnS+d+so2GnV9lChoBmgJaA9DCMl1U8prfl5AlIaUUpRoFU3oA2gWR0CdM/USqU/wdX2UKGgGaAloD0MIy/Yhb7ngbUCUhpRSlGgVTagBaBZHQJ01ByGSIP91fZQoaAZoCWgPQwiSWiiZnJNfQJSGlFKUaBVN6ANoFkdAnTU1HvttynV9lChoBmgJaA9DCM3LYfcdvWJAlIaUUpRoFU3oA2gWR0CdN9hCdBjXdX2UKGgGaAloD0MIZvZ5jPIvb0CUhpRSlGgVTdwCaBZHQJ1C5hw2l2x1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}