monsoon-nlp commited on
Commit
b55364a
1 Parent(s): 3b2099f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+
10
+ ---
11
+
12
+ # monsoon-nlp/protein-matryoshka-embeddings
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ <!--- Describe your model here -->
17
+
18
+ ## Usage (Sentence-Transformers)
19
+
20
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
+
22
+ ```
23
+ pip install -U sentence-transformers
24
+ ```
25
+
26
+ Then you can use the model like this:
27
+
28
+ ```python
29
+ from sentence_transformers import SentenceTransformer
30
+ sentences = ["This is an example sentence", "Each sentence is converted"]
31
+
32
+ model = SentenceTransformer('monsoon-nlp/protein-matryoshka-embeddings')
33
+ embeddings = model.encode(sentences)
34
+ print(embeddings)
35
+ ```
36
+
37
+
38
+
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ #Mean Pooling - Take attention mask into account for correct averaging
48
+ def mean_pooling(model_output, attention_mask):
49
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
+
53
+
54
+ # Sentences we want sentence embeddings for
55
+ sentences = ['This is an example sentence', 'Each sentence is converted']
56
+
57
+ # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('monsoon-nlp/protein-matryoshka-embeddings')
59
+ model = AutoModel.from_pretrained('monsoon-nlp/protein-matryoshka-embeddings')
60
+
61
+ # Tokenize sentences
62
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
+
64
+ # Compute token embeddings
65
+ with torch.no_grad():
66
+ model_output = model(**encoded_input)
67
+
68
+ # Perform pooling. In this case, mean pooling.
69
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
+
71
+ print("Sentence embeddings:")
72
+ print(sentence_embeddings)
73
+ ```
74
+
75
+
76
+
77
+ ## Evaluation Results
78
+
79
+ <!--- Describe how your model was evaluated -->
80
+
81
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=monsoon-nlp/protein-matryoshka-embeddings)
82
+
83
+
84
+ ## Training
85
+ The model was trained with the parameters:
86
+
87
+ **DataLoader**:
88
+
89
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 30000 with parameters:
90
+ ```
91
+ {'batch_size': 10}
92
+ ```
93
+
94
+ **Loss**:
95
+
96
+ `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
97
+ ```
98
+ {'loss': 'CoSENTLoss', 'matryoshka_dims': [768, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1], 'n_dims_per_step': -1}
99
+ ```
100
+
101
+ Parameters of the fit()-Method:
102
+ ```
103
+ {
104
+ "epochs": 1,
105
+ "evaluation_steps": 3000,
106
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
107
+ "max_grad_norm": 1,
108
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
109
+ "optimizer_params": {
110
+ "lr": 2e-05
111
+ },
112
+ "scheduler": "WarmupLinear",
113
+ "steps_per_epoch": null,
114
+ "warmup_steps": 3000,
115
+ "weight_decay": 0.01
116
+ }
117
+ ```
118
+
119
+
120
+ ## Full Model Architecture
121
+ ```
122
+ SentenceTransformer(
123
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
124
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
125
+ )
126
+ ```
127
+
128
+ ## Citing & Authors
129
+
130
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Rostlab/prot_bert_bfd",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 40000,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 30,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.38.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.6.0",
4
+ "transformers": "4.38.2",
5
+ "pytorch": "2.2.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99cb4614454708365e49b7595159aabf060ce6c0de80bd4011c35e8fc0e4e9b5
3
+ size 1679780680
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 512,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": "BatchLongest",
11
+ "direction": "Right",
12
+ "pad_to_multiple_of": null,
13
+ "pad_id": 0,
14
+ "pad_type_id": 0,
15
+ "pad_token": "[PAD]"
16
+ },
17
+ "added_tokens": [
18
+ {
19
+ "id": 0,
20
+ "content": "[PAD]",
21
+ "single_word": false,
22
+ "lstrip": false,
23
+ "rstrip": false,
24
+ "normalized": false,
25
+ "special": true
26
+ },
27
+ {
28
+ "id": 1,
29
+ "content": "[UNK]",
30
+ "single_word": false,
31
+ "lstrip": false,
32
+ "rstrip": false,
33
+ "normalized": false,
34
+ "special": true
35
+ },
36
+ {
37
+ "id": 2,
38
+ "content": "[CLS]",
39
+ "single_word": false,
40
+ "lstrip": false,
41
+ "rstrip": false,
42
+ "normalized": false,
43
+ "special": true
44
+ },
45
+ {
46
+ "id": 3,
47
+ "content": "[SEP]",
48
+ "single_word": false,
49
+ "lstrip": false,
50
+ "rstrip": false,
51
+ "normalized": false,
52
+ "special": true
53
+ },
54
+ {
55
+ "id": 4,
56
+ "content": "[MASK]",
57
+ "single_word": false,
58
+ "lstrip": false,
59
+ "rstrip": false,
60
+ "normalized": false,
61
+ "special": true
62
+ }
63
+ ],
64
+ "normalizer": {
65
+ "type": "BertNormalizer",
66
+ "clean_text": true,
67
+ "handle_chinese_chars": true,
68
+ "strip_accents": null,
69
+ "lowercase": false
70
+ },
71
+ "pre_tokenizer": {
72
+ "type": "BertPreTokenizer"
73
+ },
74
+ "post_processor": {
75
+ "type": "TemplateProcessing",
76
+ "single": [
77
+ {
78
+ "SpecialToken": {
79
+ "id": "[CLS]",
80
+ "type_id": 0
81
+ }
82
+ },
83
+ {
84
+ "Sequence": {
85
+ "id": "A",
86
+ "type_id": 0
87
+ }
88
+ },
89
+ {
90
+ "SpecialToken": {
91
+ "id": "[SEP]",
92
+ "type_id": 0
93
+ }
94
+ }
95
+ ],
96
+ "pair": [
97
+ {
98
+ "SpecialToken": {
99
+ "id": "[CLS]",
100
+ "type_id": 0
101
+ }
102
+ },
103
+ {
104
+ "Sequence": {
105
+ "id": "A",
106
+ "type_id": 0
107
+ }
108
+ },
109
+ {
110
+ "SpecialToken": {
111
+ "id": "[SEP]",
112
+ "type_id": 0
113
+ }
114
+ },
115
+ {
116
+ "Sequence": {
117
+ "id": "B",
118
+ "type_id": 1
119
+ }
120
+ },
121
+ {
122
+ "SpecialToken": {
123
+ "id": "[SEP]",
124
+ "type_id": 1
125
+ }
126
+ }
127
+ ],
128
+ "special_tokens": {
129
+ "[CLS]": {
130
+ "id": "[CLS]",
131
+ "ids": [
132
+ 2
133
+ ],
134
+ "tokens": [
135
+ "[CLS]"
136
+ ]
137
+ },
138
+ "[SEP]": {
139
+ "id": "[SEP]",
140
+ "ids": [
141
+ 3
142
+ ],
143
+ "tokens": [
144
+ "[SEP]"
145
+ ]
146
+ }
147
+ }
148
+ },
149
+ "decoder": {
150
+ "type": "WordPiece",
151
+ "prefix": "##",
152
+ "cleanup": true
153
+ },
154
+ "model": {
155
+ "type": "WordPiece",
156
+ "unk_token": "[UNK]",
157
+ "continuing_subword_prefix": "##",
158
+ "max_input_chars_per_word": 100,
159
+ "vocab": {
160
+ "[PAD]": 0,
161
+ "[UNK]": 1,
162
+ "[CLS]": 2,
163
+ "[SEP]": 3,
164
+ "[MASK]": 4,
165
+ "L": 5,
166
+ "A": 6,
167
+ "G": 7,
168
+ "V": 8,
169
+ "E": 9,
170
+ "S": 10,
171
+ "I": 11,
172
+ "K": 12,
173
+ "R": 13,
174
+ "D": 14,
175
+ "T": 15,
176
+ "P": 16,
177
+ "N": 17,
178
+ "Q": 18,
179
+ "F": 19,
180
+ "Y": 20,
181
+ "M": 21,
182
+ "H": 22,
183
+ "C": 23,
184
+ "W": 24,
185
+ "X": 25,
186
+ "U": 26,
187
+ "B": 27,
188
+ "Z": 28,
189
+ "O": 29
190
+ }
191
+ }
192
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [PAD]
2
+ [UNK]
3
+ [CLS]
4
+ [SEP]
5
+ [MASK]
6
+ L
7
+ A
8
+ G
9
+ V
10
+ E
11
+ S
12
+ I
13
+ K
14
+ R
15
+ D
16
+ T
17
+ P
18
+ N
19
+ Q
20
+ F
21
+ Y
22
+ M
23
+ H
24
+ C
25
+ W
26
+ X
27
+ U
28
+ B
29
+ Z
30
+ O