PEFT
code
instruct
code-llama
File size: 1,261 Bytes
388c9c5
 
600d701
 
 
 
 
 
 
 
388c9c5
 
600d701
388c9c5
600d701
388c9c5
600d701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
library_name: peft
tags:
- code
- instruct
- code-llama
datasets:
- ehartford/dolphin-2.5-mixtral-8x7b
base_model: codellama/CodeLlama-7b-hf
license: apache-2.0
---

### Finetuning Overview:

**Model Used:** codellama/CodeLlama-7b-hf 

**Dataset:** ehartford/dolphin-2.5-mixtral-8x7b  

#### Dataset Insights:

[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.

#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 1h 15m 3s for 2 epochs using an A6000 48GB GPU.
- Costed `$2.525` for the entire 2 epochs.

#### Hyperparameters & Additional Details:

- **Epochs:** 2
- **Cost Per Epoch:** $1.26
- **Total Finetuning Cost:** $2.525
- **Model Path:** codellama/CodeLlama-7b-hf
- **Learning Rate:** 0.0002
- **Data Split:** 100% train 
- **Gradient Accumulation Steps:** 64
- **lora r:** 64
- **lora alpha:** 16

---
license: apache-2.0