File size: 1,261 Bytes
388c9c5 600d701 388c9c5 600d701 388c9c5 600d701 388c9c5 600d701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: peft
tags:
- code
- instruct
- code-llama
datasets:
- ehartford/dolphin-2.5-mixtral-8x7b
base_model: codellama/CodeLlama-7b-hf
license: apache-2.0
---
### Finetuning Overview:
**Model Used:** codellama/CodeLlama-7b-hf
**Dataset:** ehartford/dolphin-2.5-mixtral-8x7b
#### Dataset Insights:
[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
#### Finetuning Details:
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:
- Was achieved with great cost-effectiveness.
- Completed in a total duration of 1h 15m 3s for 2 epochs using an A6000 48GB GPU.
- Costed `$2.525` for the entire 2 epochs.
#### Hyperparameters & Additional Details:
- **Epochs:** 2
- **Cost Per Epoch:** $1.26
- **Total Finetuning Cost:** $2.525
- **Model Path:** codellama/CodeLlama-7b-hf
- **Learning Rate:** 0.0002
- **Data Split:** 100% train
- **Gradient Accumulation Steps:** 64
- **lora r:** 64
- **lora alpha:** 16
---
license: apache-2.0 |