File size: 2,097 Bytes
dcb306d 23a27ca dcb306d 23a27ca dcb306d 23a27ca dcb306d 23a27ca dcb306d 23a27ca dcb306d 23a27ca dcb306d 15c132d dcb306d 23a27ca dcb306d 23a27ca dcb306d 23a27ca dcb306d 15c132d dcb306d 23a27ca dcb306d 23a27ca 965e777 dcb306d 23a27ca dcb306d 57d8ada 23a27ca dcb306d 23a27ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
library_name: peft
tags:
- math
- google
- gemma
datasets:
- microsoft/orca-math-word-problems-200k
base_model: google/gemma-2b
license: apache-2.0
---
### Finetuning Overview:
**Model Used:** google/gemma-2b
**Dataset:** microsoft/orca-math-word-problems-200k
#### Dataset Insights:
[Math Ocra](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k) - This dataset contains ~200K grade school math word problems. All the answers in this dataset is generated using Azure GPT4-Turbo. Please refer to [Orca-Math: Unlocking the potential of SLMs in Grade School Math](https://arxiv.org/pdf/2402.14830.pdf) for details about the dataset construction.
#### Finetuning Details:
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:
- A remarkable 68% boost in performance over the base model.
- Completed in a total duration of 2d 7h 45m for 10 epochs using an A6000 48GB GPU.
- Demonstrated cost-effectiveness, with a single epoch costing only $11.3.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/puTKYn6MPlVzjfcwTAFXQ.png)
#### Hyperparameters & Additional Details:
- **Epochs:** 10
- **Total Finetuning Cost:** $113
- **Model Path:** google/gemma-2b
- **Learning Rate:** 0.0001
- **Gradient Accumulation Steps:** 32
- **lora_alpha:** 128
- **lora_r:** 64
#### Benchmarking Performance Details:
### Finetuned Gemma-2B using MonsterAPI achieved a **remarkable score of 20.02** on the GSM Plus benchmark.
- This represents a **68% improvement** over its base model performance.
- Notably, it **outperformed larger models like LLaMA-2-13B and Code-LLaMA-7B**
This result suggests that targeted fine-tuning can significantly improve model performance.
### Read the Detailed Case Study over [here](https://blog.monsterapi.ai/finetuned-gemma-2b-on-monsterapi-outperforms-llama-13b/)
![Benchmarking Performance](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/ZpLtZm-32Y0W4LwW5LptZ.png)
---
license: apache-2.0 |