--- library_name: peft tags: - meta-llama - code - instruct - WizardLM - Mistral-7B-v0.1 datasets: - WizardLM/WizardLM_evol_instruct_70k base_model: mistralai/Mistral-7B-v0.1 license: apache-2.0 --- ### Finetuning Overview: **Model Used:** mistralai/Mistral-7B-v0.1 **Dataset:** WizardLM/WizardLM_evol_instruct_70k #### Dataset Insights: The WizardLM/WizardLM_evol_instruct_70k dataset, tailored specifically for enhancing interactive capabilities, it was developed using EVOL-Instruct method.Which will basically enhance a smaller dataset, with tougher quesitons for the LLM to perform #### Finetuning Details: With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning: - Was achieved with great cost-effectiveness. - Completed in a total duration of 5hrs 18mins for 1 epoch using an A6000 48GB GPU. - Costed `$10` for the entire epoch. #### Hyperparameters & Additional Details: - **Epochs:** 1 - **Cost Per Epoch:** $10 - **Total Finetuning Cost:** $10 - **Model Path:** mistralai/Mistral-7B-v0.1 - **Learning Rate:** 0.0002 - **Data Split:** 90% train 10% validation - **Gradient Accumulation Steps:** 4 --- Prompt Structure ``` ### INSTRUCTION: [instruction] ### RESPONSE: [output] ``` Training loss : ![training loss](train-loss.png "Training loss") --- Benchmarking results ``` ARC (arc_challenge, acc_norm) 0.5543 HellaSwag (hellaswag, acc_norm) 0.7979 TruthfulQA (truthfulqa_mc2) 0.4781 ``` --- #### Benchmark Results ![ARC HELLSWAG TRUTHFULMQ Benchmark comparison](./updated_title_performance_comparison_bar_plot.png) license: apache-2.0