montebello-642 commited on
Commit
f2a4ddd
1 Parent(s): 6b4216c

Delete Logistic Regression.ipynb

Browse files
Files changed (1) hide show
  1. Logistic Regression.ipynb +0 -264
Logistic Regression.ipynb DELETED
@@ -1,264 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "metadata": {
7
- "collapsed": true
8
- },
9
- "outputs": [
10
- {
11
- "name": "stdout",
12
- "output_type": "stream",
13
- "text": [
14
- "Index(['duration_mo', 'mos_ethnicity', 'complainant_ethnicity', 'is_force',\n",
15
- " 'is_abuse_of_authority', 'is_discourtesy', 'is_offensive_language',\n",
16
- " 'outcome_description'],\n",
17
- " dtype='object')\n",
18
- " duration_mo mos_ethnicity complainant_ethnicity is_force \\\n",
19
- "0 10 0 2 0 \n",
20
- "1 9 1 2 0 \n",
21
- "2 9 1 2 1 \n",
22
- "3 14 1 2 0 \n",
23
- "4 6 0 7 0 \n",
24
- "\n",
25
- " is_abuse_of_authority is_discourtesy is_offensive_language \\\n",
26
- "0 1 0 0 \n",
27
- "1 0 1 0 \n",
28
- "2 0 0 0 \n",
29
- "3 1 0 0 \n",
30
- "4 0 0 1 \n",
31
- "\n",
32
- " outcome_description \n",
33
- "0 0 \n",
34
- "1 0 \n",
35
- "2 0 \n",
36
- "3 0 \n",
37
- "4 1 \n",
38
- " duration_mo mos_ethnicity complainant_ethnicity is_force \\\n",
39
- "count 33358.000000 33358.000000 33358.000000 33358.000000 \n",
40
- "mean 9.733767 0.946819 2.468283 0.022573 \n",
41
- "std 5.017703 0.754311 2.256281 0.148541 \n",
42
- "min 0.000000 0.000000 0.000000 0.000000 \n",
43
- "25% 6.000000 0.000000 1.000000 0.000000 \n",
44
- "50% 10.000000 1.000000 2.000000 0.000000 \n",
45
- "75% 13.000000 1.000000 2.000000 0.000000 \n",
46
- "max 110.000000 4.000000 7.000000 1.000000 \n",
47
- "\n",
48
- " is_abuse_of_authority is_discourtesy is_offensive_language \\\n",
49
- "count 33358.000000 33358.000000 33358.000000 \n",
50
- "mean 0.608310 0.140206 0.228911 \n",
51
- "std 0.488135 0.347206 0.420138 \n",
52
- "min 0.000000 0.000000 0.000000 \n",
53
- "25% 0.000000 0.000000 0.000000 \n",
54
- "50% 1.000000 0.000000 0.000000 \n",
55
- "75% 1.000000 0.000000 0.000000 \n",
56
- "max 1.000000 1.000000 1.000000 \n",
57
- "\n",
58
- " outcome_description \n",
59
- "count 33358.000000 \n",
60
- "mean 0.438066 \n",
61
- "std 0.496157 \n",
62
- "min 0.000000 \n",
63
- "25% 0.000000 \n",
64
- "50% 0.000000 \n",
65
- "75% 1.000000 \n",
66
- "max 1.000000 \n",
67
- "duration_mo 0\n",
68
- "mos_ethnicity 0\n",
69
- "complainant_ethnicity 0\n",
70
- "is_force 0\n",
71
- "is_abuse_of_authority 0\n",
72
- "is_discourtesy 0\n",
73
- "is_offensive_language 0\n",
74
- "outcome_description 0\n",
75
- "dtype: int64\n",
76
- "Accuracy: 0.65\n",
77
- " precision recall f1-score support\n",
78
- "\n",
79
- " 0 0.65 0.82 0.72 3778\n",
80
- " 1 0.64 0.42 0.51 2894\n",
81
- "\n",
82
- " accuracy 0.65 6672\n",
83
- " macro avg 0.64 0.62 0.62 6672\n",
84
- "weighted avg 0.64 0.65 0.63 6672\n",
85
- "\n",
86
- "Running on local URL: http://127.0.0.1:7860\n",
87
- "Running on public URL: https://d8846d114093b0894a.gradio.live\n",
88
- "\n",
89
- "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
90
- ]
91
- },
92
- {
93
- "data": {
94
- "text/plain": "<IPython.core.display.HTML object>",
95
- "text/html": "<div><iframe src=\"https://d8846d114093b0894a.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
96
- },
97
- "metadata": {},
98
- "output_type": "display_data"
99
- },
100
- {
101
- "data": {
102
- "text/plain": ""
103
- },
104
- "execution_count": 1,
105
- "metadata": {},
106
- "output_type": "execute_result"
107
- }
108
- ],
109
- "source": [
110
- "import pandas as pd\n",
111
- "from sklearn.model_selection import train_test_split, cross_val_score\n",
112
- "from sklearn.preprocessing import StandardScaler\n",
113
- "from sklearn.linear_model import LogisticRegression\n",
114
- "from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n",
115
- "import seaborn as sns\n",
116
- "import matplotlib.pyplot as plt\n",
117
- "import gradio as gr\n",
118
- "import numpy as np\n",
119
- "\n",
120
- "#loading the dataset and select only the columns needed\n",
121
- "selected_columns = ['duration_mo', 'mos_ethnicity', 'complainant_ethnicity', 'is_force', 'is_abuse_of_authority', 'is_discourtesy', 'is_offensive_language', 'outcome_description']\n",
122
- "df = pd.read_csv('my_dataset_logistic.csv', usecols=selected_columns)\n",
123
- "\n",
124
- "print(df.columns)\n",
125
- "print(df.head())\n",
126
- "print(df.describe())\n",
127
- "print(df.isnull().sum())\n",
128
- "\n",
129
- "#set the name of the column to calculate accuracy\n",
130
- "X = df.drop('outcome_description', axis=1)\n",
131
- "y = df['outcome_description']\n",
132
- "X.fillna(0, inplace=True)\n",
133
- "\n",
134
- "#split into training and test set\n",
135
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
136
- "\n",
137
- "#standardize the features\n",
138
- "scaler = StandardScaler()\n",
139
- "X_train_scaled = scaler.fit_transform(X_train)\n",
140
- "X_test_scaled = scaler.transform(X_test)\n",
141
- "\n",
142
- "#train the model\n",
143
- "model = LogisticRegression(random_state=42)\n",
144
- "model.fit(X_train_scaled, y_train)\n",
145
- "\n",
146
- "#make predictions and evaluate the model\n",
147
- "y_pred = model.predict(X_test_scaled)\n",
148
- "accuracy = accuracy_score(y_test, y_pred)\n",
149
- "print(f'Accuracy: {accuracy:.2f}')\n",
150
- "\n",
151
- "#classification report with confusion matrix, correlation graph and standard deviation of all the variables\n",
152
- "print(classification_report(y_test, y_pred))\n",
153
- "\n",
154
- "# Confusion Matrix\n",
155
- "conf_matrix = confusion_matrix(y_test, y_pred)\n",
156
- "plt.figure(figsize=(8, 6))\n",
157
- "sns.heatmap(conf_matrix, annot=True, fmt=\"d\", cmap=\"Blues\", cbar=False,xticklabels=df['outcome_description'].unique(), yticklabels=df['outcome_description'].unique())\n",
158
- "plt.title(\"Confusion Matrix\")\n",
159
- "plt.xlabel(\"Predicted\")\n",
160
- "plt.ylabel(\"Actual\")\n",
161
- "plt.show()\n",
162
- "\n",
163
- "#Correlation Matrix\n",
164
- "correlation_matrix = df.corr()\n",
165
- "plt.figure(figsize=(10, 8))\n",
166
- "sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=.5)\n",
167
- "plt.title('Correlation Matrix')\n",
168
- "plt.show()\n",
169
- "\n",
170
- "#plotting a bar chart to visualize better the correlation\n",
171
- "target_correlations = correlation_matrix['outcome_description'].sort_values(ascending=False)\n",
172
- "plt.figure(figsize=(10, 6))\n",
173
- "target_correlations.drop('outcome_description').plot(kind='bar', color='blue')\n",
174
- "plt.title('Correlations with Target Variable')\n",
175
- "plt.xlabel('Features')\n",
176
- "plt.ylabel('Correlation')\n",
177
- "plt.show()\n",
178
- "\n",
179
- "#Standard Deviation\n",
180
- "std_dev = df.std()\n",
181
- "print('\\nStandard deviation')\n",
182
- "print(std_dev)\n",
183
- "\n",
184
- "#gradio implementation\n",
185
- "#create the available options for the ethnicities\n",
186
- "mos_ethnicity_options = [\"Hispanic\", \"White\", \"Black\", \"Asian\", \"American Indian\", \"Other Race\", \"Refused\", \"Unknown\"]\n",
187
- "complainant_ethnicity_options = [\"Hispanic\", \"White\", \"Black\", \"Asian\", \"American Indian\", \"Other Race\", \"Refused\", \"Unknown\"]\n",
188
- "\n",
189
- "#defining the function to make predictions using the model\n",
190
- "def predict_outcome_duration(mos_ethnicity, complainant_ethnicity, is_force, is_abuse_of_authority, is_discourtesy, is_offensive_language, duration_mo):\n",
191
- " try:\n",
192
- " #converting values from string to int\n",
193
- " mos_ethnicity_encoded = mos_ethnicity_options.index(mos_ethnicity)\n",
194
- " complainant_ethnicity_encoded = complainant_ethnicity_options.index(complainant_ethnicity)\n",
195
- "\n",
196
- " #converting checkbox value to int\n",
197
- " is_force = int(is_force)\n",
198
- " is_abuse_of_authority = int(is_abuse_of_authority)\n",
199
- " is_discourtesy = int(is_discourtesy)\n",
200
- " is_offensive_language = int(is_offensive_language)\n",
201
- "\n",
202
- " input_data = [[duration_mo, mos_ethnicity_encoded, complainant_ethnicity_encoded, is_force, is_abuse_of_authority, is_discourtesy, is_offensive_language]]\n",
203
- " input_scaled = scaler.transform(input_data)\n",
204
- " prediction = model.predict(input_scaled)[0]\n",
205
- "\n",
206
- " #outputting the result\n",
207
- " return \"Arrest\" if prediction == 1 else \"No Arrest\"\n",
208
- "\n",
209
- " except Exception as e:\n",
210
- " return f\"Error: {str(e)}\"\n",
211
- "\n",
212
- "#creating the gradio interface, using dropdowns to show the different ethnicities, checkbox to identify which type of allegation it was and a slider with the duration in months\n",
213
- "mos_ethnicity_dropdown = gr.Dropdown(choices=mos_ethnicity_options,label=\"Defendant Ethnicity\")\n",
214
- "complainant_ethnicity_dropdown = gr.Dropdown(choices=complainant_ethnicity_options, label=\"Complainant Ethnicity\")\n",
215
- "is_force_checkbox = gr.Checkbox()\n",
216
- "is_abuse_of_authority_checkbox = gr.Checkbox()\n",
217
- "is_discourtesy_checkbox = gr.Checkbox()\n",
218
- "is_offensive_language_checkbox = gr.Checkbox()\n",
219
- "duration_mo_slider = gr.Slider(minimum=0, maximum=20, label=\"Duration in months\")\n",
220
- "\n",
221
- "iface = gr.Interface(\n",
222
- " fn=predict_outcome_duration,\n",
223
- " inputs=[complainant_ethnicity_dropdown, mos_ethnicity_dropdown, is_force_checkbox, is_abuse_of_authority_checkbox, is_discourtesy_checkbox, is_offensive_language_checkbox, duration_mo_slider],\n",
224
- " outputs=\"text\",\n",
225
- " live=True,\n",
226
- " title=\"Complaint Outcome Prediction\"\n",
227
- ")\n",
228
- "\n",
229
- "# Launch the Gradio Interface\n",
230
- "iface.launch(share=True)"
231
- ]
232
- },
233
- {
234
- "cell_type": "code",
235
- "execution_count": null,
236
- "outputs": [],
237
- "source": [],
238
- "metadata": {
239
- "collapsed": false
240
- }
241
- }
242
- ],
243
- "metadata": {
244
- "kernelspec": {
245
- "display_name": "Python 3",
246
- "language": "python",
247
- "name": "python3"
248
- },
249
- "language_info": {
250
- "codemirror_mode": {
251
- "name": "ipython",
252
- "version": 2
253
- },
254
- "file_extension": ".py",
255
- "mimetype": "text/x-python",
256
- "name": "python",
257
- "nbconvert_exporter": "python",
258
- "pygments_lexer": "ipython2",
259
- "version": "2.7.6"
260
- }
261
- },
262
- "nbformat": 4,
263
- "nbformat_minor": 0
264
- }