morganchen1007
commited on
Commit
·
f713c29
1
Parent(s):
418e401
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: resnet-50-finetuned-resnet50_0831
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.976407675369613
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# resnet-50-finetuned-resnet50_0831
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0862
|
35 |
+
- Accuracy: 0.9764
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 20
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.9066 | 1.0 | 223 | 0.8770 | 0.6659 |
|
70 |
+
| 0.5407 | 2.0 | 446 | 0.4251 | 0.7867 |
|
71 |
+
| 0.3614 | 3.0 | 669 | 0.2009 | 0.9390 |
|
72 |
+
| 0.3016 | 4.0 | 892 | 0.1362 | 0.9582 |
|
73 |
+
| 0.2358 | 5.0 | 1115 | 0.1139 | 0.9676 |
|
74 |
+
| 0.247 | 6.0 | 1338 | 0.1081 | 0.9698 |
|
75 |
+
| 0.2135 | 7.0 | 1561 | 0.1027 | 0.9720 |
|
76 |
+
| 0.2043 | 8.0 | 1784 | 0.1026 | 0.9695 |
|
77 |
+
| 0.2165 | 9.0 | 2007 | 0.0957 | 0.9733 |
|
78 |
+
| 0.1983 | 10.0 | 2230 | 0.0936 | 0.9736 |
|
79 |
+
| 0.2116 | 11.0 | 2453 | 0.0949 | 0.9736 |
|
80 |
+
| 0.2341 | 12.0 | 2676 | 0.0905 | 0.9755 |
|
81 |
+
| 0.2004 | 13.0 | 2899 | 0.0901 | 0.9739 |
|
82 |
+
| 0.1956 | 14.0 | 3122 | 0.0877 | 0.9755 |
|
83 |
+
| 0.1668 | 15.0 | 3345 | 0.0847 | 0.9764 |
|
84 |
+
| 0.1855 | 16.0 | 3568 | 0.0850 | 0.9755 |
|
85 |
+
| 0.18 | 17.0 | 3791 | 0.0897 | 0.9745 |
|
86 |
+
| 0.1772 | 18.0 | 4014 | 0.0852 | 0.9755 |
|
87 |
+
| 0.1881 | 19.0 | 4237 | 0.0845 | 0.9764 |
|
88 |
+
| 0.2145 | 20.0 | 4460 | 0.0862 | 0.9764 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.21.1
|
94 |
+
- Pytorch 1.12.1
|
95 |
+
- Datasets 2.4.0
|
96 |
+
- Tokenizers 0.12.1
|