morganchen1007 commited on
Commit
f713c29
·
1 Parent(s): 418e401

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: resnet-50-finetuned-resnet50_0831
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.976407675369613
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # resnet-50-finetuned-resnet50_0831
31
+
32
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0862
35
+ - Accuracy: 0.9764
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.9066 | 1.0 | 223 | 0.8770 | 0.6659 |
70
+ | 0.5407 | 2.0 | 446 | 0.4251 | 0.7867 |
71
+ | 0.3614 | 3.0 | 669 | 0.2009 | 0.9390 |
72
+ | 0.3016 | 4.0 | 892 | 0.1362 | 0.9582 |
73
+ | 0.2358 | 5.0 | 1115 | 0.1139 | 0.9676 |
74
+ | 0.247 | 6.0 | 1338 | 0.1081 | 0.9698 |
75
+ | 0.2135 | 7.0 | 1561 | 0.1027 | 0.9720 |
76
+ | 0.2043 | 8.0 | 1784 | 0.1026 | 0.9695 |
77
+ | 0.2165 | 9.0 | 2007 | 0.0957 | 0.9733 |
78
+ | 0.1983 | 10.0 | 2230 | 0.0936 | 0.9736 |
79
+ | 0.2116 | 11.0 | 2453 | 0.0949 | 0.9736 |
80
+ | 0.2341 | 12.0 | 2676 | 0.0905 | 0.9755 |
81
+ | 0.2004 | 13.0 | 2899 | 0.0901 | 0.9739 |
82
+ | 0.1956 | 14.0 | 3122 | 0.0877 | 0.9755 |
83
+ | 0.1668 | 15.0 | 3345 | 0.0847 | 0.9764 |
84
+ | 0.1855 | 16.0 | 3568 | 0.0850 | 0.9755 |
85
+ | 0.18 | 17.0 | 3791 | 0.0897 | 0.9745 |
86
+ | 0.1772 | 18.0 | 4014 | 0.0852 | 0.9755 |
87
+ | 0.1881 | 19.0 | 4237 | 0.0845 | 0.9764 |
88
+ | 0.2145 | 20.0 | 4460 | 0.0862 | 0.9764 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.21.1
94
+ - Pytorch 1.12.1
95
+ - Datasets 2.4.0
96
+ - Tokenizers 0.12.1