Skylion007
commited on
Commit
•
b5cb8d5
1
Parent(s):
ce11e47
Update flash_attn_triton.py
Browse filesUpdates the triton flash attention file from llm_foundry
- flash_attn_triton.py +316 -590
flash_attn_triton.py
CHANGED
@@ -1,23 +1,17 @@
|
|
1 |
# Copyright 2022 MosaicML Examples authors
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
-
"""
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
-
# you may not use this file except in compliance with the License.
|
10 |
-
# You may obtain a copy of the License at
|
11 |
-
#
|
12 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
-
#
|
14 |
-
# Unless required by applicable law or agreed to in writing, software
|
15 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
-
# See the License for the specific language governing permissions and
|
18 |
-
# limitations under the License.
|
19 |
|
20 |
*Experimental* implementation of FlashAttention in Triton.
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
22 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
23 |
|
@@ -33,87 +27,65 @@ Changes:
|
|
33 |
small batch size * nheads.
|
34 |
|
35 |
Caution:
|
|
|
|
|
|
|
36 |
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
37 |
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
38 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
39 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
40 |
that there are none left for other head dimensions.
|
|
|
41 |
Differences between this Triton version and the CUDA version:
|
42 |
- Triton version doesn't support dropout.
|
43 |
-
- Triton forward is generally faster than CUDA forward
|
44 |
-
|
45 |
-
|
46 |
-
- Triton version doesn't
|
|
|
47 |
"""
|
48 |
|
49 |
import math
|
50 |
|
51 |
import torch
|
52 |
-
import triton # type: ignore (reportMissingImports)
|
53 |
-
import triton.language as tl # type: ignore (reportMissingImports)
|
54 |
-
from einops import repeat
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
@triton.jit
|
78 |
def _fwd_kernel(
|
79 |
-
Q,
|
80 |
-
|
81 |
-
V,
|
82 |
-
Bias,
|
83 |
-
Out,
|
84 |
-
Lse,
|
85 |
-
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
86 |
softmax_scale,
|
87 |
-
stride_qb,
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
stride_vh,
|
95 |
-
stride_vn,
|
96 |
-
stride_bb,
|
97 |
-
stride_bh,
|
98 |
-
stride_bm,
|
99 |
-
stride_ob,
|
100 |
-
stride_oh,
|
101 |
-
stride_om,
|
102 |
-
nheads,
|
103 |
-
seqlen_q,
|
104 |
-
seqlen_k,
|
105 |
-
seqlen_q_rounded,
|
106 |
-
headdim,
|
107 |
-
CACHE_KEY_SEQLEN_Q,
|
108 |
-
CACHE_KEY_SEQLEN_K,
|
109 |
BIAS_TYPE: tl.constexpr,
|
110 |
IS_CAUSAL: tl.constexpr,
|
111 |
BLOCK_HEADDIM: tl.constexpr,
|
112 |
-
EVEN_M: tl.constexpr,
|
113 |
-
|
114 |
-
EVEN_HEADDIM: tl.constexpr,
|
115 |
-
BLOCK_M: tl.constexpr,
|
116 |
-
BLOCK_N: tl.constexpr,
|
117 |
):
|
118 |
start_m = tl.program_id(0)
|
119 |
off_hb = tl.program_id(1)
|
@@ -130,23 +102,17 @@ def _fwd_kernel(
|
|
130 |
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
131 |
# https://github.com/openai/triton/issues/741
|
132 |
# I'm seeing a tiny bit of difference (5-7us)
|
133 |
-
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (
|
134 |
-
|
135 |
-
|
136 |
-
offs_n[:, None] * stride_kn + offs_d[None, :])
|
137 |
-
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (
|
138 |
-
offs_n[:, None] * stride_vn + offs_d[None, :])
|
139 |
if BIAS_TYPE == 'vector':
|
140 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
141 |
elif BIAS_TYPE == 'matrix':
|
142 |
-
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (
|
143 |
-
offs_m[:, None] * stride_bm + offs_n[None, :])
|
144 |
-
else:
|
145 |
-
raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
|
146 |
# initialize pointer to m and l
|
147 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
148 |
-
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
149 |
-
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
150 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
151 |
# load q: it will stay in SRAM throughout
|
152 |
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
@@ -160,13 +126,10 @@ def _fwd_kernel(
|
|
160 |
if EVEN_HEADDIM:
|
161 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
162 |
else:
|
163 |
-
q = tl.load(q_ptrs,
|
164 |
-
mask=(offs_m[:, None] < seqlen_q) &
|
165 |
-
(offs_d[None, :] < headdim),
|
166 |
other=0.0)
|
167 |
# loop over k, v and update accumulator
|
168 |
-
end_n = seqlen_k if not IS_CAUSAL else tl.minimum(
|
169 |
-
(start_m + 1) * BLOCK_M, seqlen_k)
|
170 |
for start_n in range(0, end_n, BLOCK_N):
|
171 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
172 |
# -- compute qk ----
|
@@ -174,48 +137,37 @@ def _fwd_kernel(
|
|
174 |
if EVEN_HEADDIM:
|
175 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
176 |
else:
|
177 |
-
k = tl.load(k_ptrs + start_n * stride_kn,
|
178 |
-
mask=offs_d[None, :] < headdim,
|
179 |
-
other=0.0)
|
180 |
else:
|
181 |
if EVEN_HEADDIM:
|
182 |
-
k = tl.load(k_ptrs + start_n * stride_kn,
|
183 |
-
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
184 |
other=0.0)
|
185 |
else:
|
186 |
k = tl.load(k_ptrs + start_n * stride_kn,
|
187 |
-
mask=((start_n + offs_n)[:, None] < seqlen_k) &
|
188 |
-
(offs_d[None, :] < headdim),
|
189 |
other=0.0)
|
190 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
191 |
qk += tl.dot(q, k, trans_b=True)
|
192 |
# Trying to combine the two masks seem to make the result wrong
|
193 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
194 |
-
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0,
|
195 |
-
float('-inf'))
|
196 |
if IS_CAUSAL:
|
197 |
-
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0,
|
198 |
-
float('-inf'))
|
199 |
if BIAS_TYPE != 'none':
|
200 |
if BIAS_TYPE == 'vector':
|
201 |
if EVEN_N:
|
202 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
203 |
else:
|
204 |
-
bias = tl.load(b_ptrs + start_n,
|
205 |
-
mask=(start_n + offs_n) < seqlen_k,
|
206 |
-
other=0.0).to(tl.float32)
|
207 |
bias = bias[None, :]
|
208 |
elif BIAS_TYPE == 'matrix':
|
209 |
if EVEN_M & EVEN_N:
|
210 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
211 |
else:
|
212 |
bias = tl.load(b_ptrs + start_n,
|
213 |
-
mask=(offs_m[:, None] < seqlen_q)
|
214 |
-
|
215 |
other=0.0).to(tl.float32)
|
216 |
-
else:
|
217 |
-
raise ValueError(
|
218 |
-
"BIAS_TYPE must be one of {'vector', 'matrix'}")
|
219 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
220 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
221 |
# to multiply with softmax_scale here.
|
@@ -240,18 +192,14 @@ def _fwd_kernel(
|
|
240 |
if EVEN_HEADDIM:
|
241 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
242 |
else:
|
243 |
-
v = tl.load(v_ptrs + start_n * stride_vn,
|
244 |
-
mask=offs_d[None, :] < headdim,
|
245 |
-
other=0.0)
|
246 |
else:
|
247 |
if EVEN_HEADDIM:
|
248 |
-
v = tl.load(v_ptrs + start_n * stride_vn,
|
249 |
-
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
250 |
other=0.0)
|
251 |
else:
|
252 |
v = tl.load(v_ptrs + start_n * stride_vn,
|
253 |
-
mask=((start_n + offs_n)[:, None] < seqlen_k) &
|
254 |
-
(offs_d[None, :] < headdim),
|
255 |
other=0.0)
|
256 |
p = p.to(v.dtype)
|
257 |
acc_o += tl.dot(p, v)
|
@@ -273,9 +221,8 @@ def _fwd_kernel(
|
|
273 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
274 |
tl.store(lse_ptrs, lse_i)
|
275 |
# initialize pointers to output
|
276 |
-
|
277 |
-
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (
|
278 |
-
offs_m[:, None] * stride_om + offs_n[None, :])
|
279 |
if EVEN_M:
|
280 |
if EVEN_HEADDIM:
|
281 |
tl.store(out_ptrs, acc_o)
|
@@ -285,29 +232,17 @@ def _fwd_kernel(
|
|
285 |
if EVEN_HEADDIM:
|
286 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
287 |
else:
|
288 |
-
tl.store(out_ptrs,
|
289 |
-
|
290 |
-
mask=(offs_m[:, None] < seqlen_q) &
|
291 |
-
(offs_d[None, :] < headdim))
|
292 |
|
293 |
|
294 |
@triton.jit
|
295 |
def _bwd_preprocess_do_o_dot(
|
296 |
-
Out,
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
stride_om,
|
302 |
-
stride_dob,
|
303 |
-
stride_doh,
|
304 |
-
stride_dom,
|
305 |
-
nheads,
|
306 |
-
seqlen_q,
|
307 |
-
seqlen_q_rounded,
|
308 |
-
headdim,
|
309 |
-
BLOCK_M: tl.constexpr,
|
310 |
-
BLOCK_HEADDIM: tl.constexpr,
|
311 |
):
|
312 |
start_m = tl.program_id(0)
|
313 |
off_hb = tl.program_id(1)
|
@@ -317,54 +252,54 @@ def _bwd_preprocess_do_o_dot(
|
|
317 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
318 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
319 |
# load
|
320 |
-
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh +
|
321 |
-
offs_m[:, None]
|
322 |
-
|
323 |
-
|
324 |
-
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh +
|
325 |
-
offs_m[:, None] * stride_dom + offs_d[None, :],
|
326 |
-
mask=(offs_m[:, None] < seqlen_q) &
|
327 |
-
(offs_d[None, :] < headdim),
|
328 |
-
other=0.0).to(tl.float32)
|
329 |
delta = tl.sum(o * do, axis=1)
|
330 |
# write-back
|
331 |
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
332 |
|
333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
@triton.jit
|
335 |
def _bwd_kernel_one_col_block(
|
336 |
start_n,
|
337 |
-
Q,
|
338 |
-
|
339 |
-
|
340 |
-
Bias,
|
341 |
-
DO,
|
342 |
-
DQ,
|
343 |
-
DK,
|
344 |
-
DV,
|
345 |
-
LSE,
|
346 |
-
D,
|
347 |
softmax_scale,
|
348 |
-
stride_qm,
|
349 |
-
|
350 |
-
|
351 |
-
stride_bm,
|
352 |
-
stride_dom,
|
353 |
-
stride_dqm,
|
354 |
-
stride_dkn,
|
355 |
-
stride_dvn,
|
356 |
-
seqlen_q,
|
357 |
-
seqlen_k,
|
358 |
-
headdim,
|
359 |
ATOMIC_ADD: tl.constexpr,
|
360 |
BIAS_TYPE: tl.constexpr,
|
361 |
IS_CAUSAL: tl.constexpr,
|
362 |
BLOCK_HEADDIM: tl.constexpr,
|
363 |
-
EVEN_M: tl.constexpr,
|
364 |
-
|
365 |
-
EVEN_HEADDIM: tl.constexpr,
|
366 |
-
BLOCK_M: tl.constexpr,
|
367 |
-
BLOCK_N: tl.constexpr,
|
368 |
):
|
369 |
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
|
370 |
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
@@ -383,11 +318,19 @@ def _bwd_kernel_one_col_block(
|
|
383 |
b_ptrs = Bias + offs_n
|
384 |
elif BIAS_TYPE == 'matrix':
|
385 |
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
386 |
-
else:
|
387 |
-
raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
|
388 |
# initialize dv and dk
|
389 |
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
390 |
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
# k and v stay in SRAM throughout
|
392 |
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
|
393 |
# if we just call tl.load(k_ptrs), we get the wrong output!
|
@@ -403,13 +346,9 @@ def _bwd_kernel_one_col_block(
|
|
403 |
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
404 |
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
405 |
else:
|
406 |
-
k = tl.load(k_ptrs,
|
407 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
408 |
-
(offs_d[None, :] < headdim),
|
409 |
other=0.0)
|
410 |
-
v = tl.load(v_ptrs,
|
411 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
412 |
-
(offs_d[None, :] < headdim),
|
413 |
other=0.0)
|
414 |
# loop over rows
|
415 |
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
@@ -422,41 +361,33 @@ def _bwd_kernel_one_col_block(
|
|
422 |
q = tl.load(q_ptrs)
|
423 |
else:
|
424 |
if EVEN_HEADDIM:
|
425 |
-
q = tl.load(q_ptrs,
|
426 |
-
mask=offs_m_curr[:, None] < seqlen_q,
|
427 |
-
other=0.0)
|
428 |
else:
|
429 |
-
q = tl.load(q_ptrs,
|
430 |
-
|
431 |
-
(offs_d[None, :] < headdim),
|
432 |
-
other=0.0)
|
433 |
# recompute p = softmax(qk, dim=-1).T
|
434 |
qk = tl.dot(q, k, trans_b=True)
|
435 |
# Trying to combine the two masks seem to make the result wrong
|
436 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
437 |
-
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float(
|
438 |
if IS_CAUSAL:
|
439 |
-
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk,
|
440 |
-
float('-inf'))
|
441 |
if BIAS_TYPE != 'none':
|
|
|
442 |
if BIAS_TYPE == 'vector':
|
443 |
if EVEN_N:
|
444 |
bias = tl.load(b_ptrs).to(tl.float32)
|
445 |
else:
|
446 |
-
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k,
|
447 |
-
other=0.0).to(tl.float32)
|
448 |
bias = bias[None, :]
|
449 |
elif BIAS_TYPE == 'matrix':
|
450 |
if EVEN_M & EVEN_N:
|
451 |
bias = tl.load(b_ptrs).to(tl.float32)
|
452 |
else:
|
453 |
bias = tl.load(b_ptrs,
|
454 |
-
mask=(offs_m_curr[:, None] < seqlen_q)
|
455 |
-
|
456 |
other=0.0).to(tl.float32)
|
457 |
-
else:
|
458 |
-
raise ValueError(
|
459 |
-
"BIAS_TYPE must be one of {'vector', 'matrix'}")
|
460 |
qk = qk * softmax_scale + bias
|
461 |
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
|
462 |
# Also wrong for headdim=64.
|
@@ -476,10 +407,8 @@ def _bwd_kernel_one_col_block(
|
|
476 |
do = tl.load(do_ptrs)
|
477 |
else:
|
478 |
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
|
479 |
-
do = tl.load(do_ptrs,
|
480 |
-
|
481 |
-
(offs_d[None, :] < headdim),
|
482 |
-
other=0.0)
|
483 |
# if EVEN_M:
|
484 |
# if EVEN_HEADDIM:
|
485 |
# do = tl.load(do_ptrs)
|
@@ -511,48 +440,38 @@ def _bwd_kernel_one_col_block(
|
|
511 |
# compute dk = dot(ds.T, q)
|
512 |
dk += tl.dot(ds, q, trans_a=True)
|
513 |
# compute dq
|
|
|
|
|
514 |
if not ATOMIC_ADD:
|
515 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
516 |
-
dq = tl.load(dq_ptrs, eviction_policy=
|
517 |
dq += tl.dot(ds, k)
|
518 |
-
tl.store(dq_ptrs, dq, eviction_policy=
|
519 |
else:
|
520 |
if EVEN_HEADDIM:
|
521 |
-
dq = tl.load(dq_ptrs,
|
522 |
-
|
523 |
-
other=0.0,
|
524 |
-
eviction_policy='evict_last')
|
525 |
dq += tl.dot(ds, k)
|
526 |
-
tl.store(dq_ptrs,
|
527 |
-
|
528 |
-
mask=offs_m_curr[:, None] < seqlen_q,
|
529 |
-
eviction_policy='evict_last')
|
530 |
else:
|
531 |
dq = tl.load(dq_ptrs,
|
532 |
-
mask=(offs_m_curr[:, None] < seqlen_q) &
|
533 |
-
|
534 |
-
other=0.0,
|
535 |
-
eviction_policy='evict_last')
|
536 |
dq += tl.dot(ds, k)
|
537 |
-
tl.store(dq_ptrs,
|
538 |
-
|
539 |
-
|
540 |
-
(offs_d[None, :] < headdim),
|
541 |
-
eviction_policy='evict_last')
|
542 |
else: # If we're parallelizing across the seqlen_k dimension
|
543 |
dq = tl.dot(ds, k)
|
544 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
545 |
tl.atomic_add(dq_ptrs, dq)
|
546 |
else:
|
547 |
if EVEN_HEADDIM:
|
548 |
-
tl.atomic_add(dq_ptrs,
|
549 |
-
dq,
|
550 |
-
mask=offs_m_curr[:, None] < seqlen_q)
|
551 |
else:
|
552 |
-
tl.atomic_add(dq_ptrs,
|
553 |
-
|
554 |
-
mask=(offs_m_curr[:, None] < seqlen_q) &
|
555 |
-
(offs_d[None, :] < headdim))
|
556 |
# increment pointers
|
557 |
dq_ptrs += BLOCK_M * stride_dqm
|
558 |
q_ptrs += BLOCK_M * stride_qm
|
@@ -562,28 +481,8 @@ def _bwd_kernel_one_col_block(
|
|
562 |
# write-back
|
563 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
564 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
565 |
-
|
566 |
-
|
567 |
-
if EVEN_N & EVEN_M:
|
568 |
-
if EVEN_HEADDIM:
|
569 |
-
tl.store(dv_ptrs, dv)
|
570 |
-
tl.store(dk_ptrs, dk)
|
571 |
-
else:
|
572 |
-
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
573 |
-
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
574 |
-
else:
|
575 |
-
if EVEN_HEADDIM:
|
576 |
-
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
577 |
-
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
578 |
-
else:
|
579 |
-
tl.store(dv_ptrs,
|
580 |
-
dv,
|
581 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
582 |
-
(offs_d[None, :] < headdim))
|
583 |
-
tl.store(dk_ptrs,
|
584 |
-
dk,
|
585 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
586 |
-
(offs_d[None, :] < headdim))
|
587 |
|
588 |
|
589 |
def init_to_zero(name):
|
@@ -592,24 +491,8 @@ def init_to_zero(name):
|
|
592 |
|
593 |
@triton.autotune(
|
594 |
configs=[
|
595 |
-
triton.Config(
|
596 |
-
|
597 |
-
'BLOCK_M': 128,
|
598 |
-
'BLOCK_N': 128,
|
599 |
-
'SEQUENCE_PARALLEL': False
|
600 |
-
},
|
601 |
-
num_warps=8,
|
602 |
-
num_stages=1,
|
603 |
-
pre_hook=init_to_zero('DQ')),
|
604 |
-
triton.Config(
|
605 |
-
{
|
606 |
-
'BLOCK_M': 128,
|
607 |
-
'BLOCK_N': 128,
|
608 |
-
'SEQUENCE_PARALLEL': True
|
609 |
-
},
|
610 |
-
num_warps=8,
|
611 |
-
num_stages=1,
|
612 |
-
pre_hook=init_to_zero('DQ')),
|
613 |
# Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
|
614 |
# # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
|
615 |
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
@@ -617,69 +500,37 @@ def init_to_zero(name):
|
|
617 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
618 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
619 |
],
|
620 |
-
key=[
|
621 |
-
|
622 |
-
|
623 |
-
|
|
|
|
|
|
|
|
|
624 |
)
|
625 |
-
@triton.heuristics({
|
626 |
-
'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
|
627 |
-
'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
|
628 |
-
'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
|
629 |
-
})
|
630 |
@triton.jit
|
631 |
def _bwd_kernel(
|
632 |
-
Q,
|
633 |
-
|
634 |
-
|
635 |
-
Bias,
|
636 |
-
DO,
|
637 |
-
DQ,
|
638 |
-
DK,
|
639 |
-
DV,
|
640 |
-
LSE,
|
641 |
-
D,
|
642 |
softmax_scale,
|
643 |
-
stride_qb,
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
stride_bh,
|
654 |
-
stride_bm,
|
655 |
-
stride_dob,
|
656 |
-
stride_doh,
|
657 |
-
stride_dom,
|
658 |
-
stride_dqb,
|
659 |
-
stride_dqh,
|
660 |
-
stride_dqm,
|
661 |
-
stride_dkb,
|
662 |
-
stride_dkh,
|
663 |
-
stride_dkn,
|
664 |
-
stride_dvb,
|
665 |
-
stride_dvh,
|
666 |
-
stride_dvn,
|
667 |
-
nheads,
|
668 |
-
seqlen_q,
|
669 |
-
seqlen_k,
|
670 |
-
seqlen_q_rounded,
|
671 |
-
headdim,
|
672 |
-
CACHE_KEY_SEQLEN_Q,
|
673 |
-
CACHE_KEY_SEQLEN_K,
|
674 |
BIAS_TYPE: tl.constexpr,
|
675 |
IS_CAUSAL: tl.constexpr,
|
676 |
BLOCK_HEADDIM: tl.constexpr,
|
677 |
SEQUENCE_PARALLEL: tl.constexpr,
|
678 |
-
EVEN_M: tl.constexpr,
|
679 |
-
|
680 |
-
EVEN_HEADDIM: tl.constexpr,
|
681 |
-
BLOCK_M: tl.constexpr,
|
682 |
-
BLOCK_N: tl.constexpr,
|
683 |
):
|
684 |
off_hb = tl.program_id(1)
|
685 |
off_b = off_hb // nheads
|
@@ -700,72 +551,40 @@ def _bwd_kernel(
|
|
700 |
if not SEQUENCE_PARALLEL:
|
701 |
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
702 |
for start_n in range(0, num_block_n):
|
703 |
-
_bwd_kernel_one_col_block(
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
stride_dom,
|
720 |
-
stride_dqm,
|
721 |
-
stride_dkn,
|
722 |
-
stride_dvn,
|
723 |
-
seqlen_q,
|
724 |
-
seqlen_k,
|
725 |
-
headdim,
|
726 |
-
ATOMIC_ADD=False,
|
727 |
-
BIAS_TYPE=BIAS_TYPE,
|
728 |
-
IS_CAUSAL=IS_CAUSAL,
|
729 |
-
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
730 |
-
EVEN_M=EVEN_M,
|
731 |
-
EVEN_N=EVEN_N,
|
732 |
-
EVEN_HEADDIM=EVEN_HEADDIM,
|
733 |
-
BLOCK_M=BLOCK_M,
|
734 |
-
BLOCK_N=BLOCK_N)
|
735 |
else:
|
736 |
start_n = tl.program_id(0)
|
737 |
-
_bwd_kernel_one_col_block(
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
stride_dom,
|
754 |
-
stride_dqm,
|
755 |
-
stride_dkn,
|
756 |
-
stride_dvn,
|
757 |
-
seqlen_q,
|
758 |
-
seqlen_k,
|
759 |
-
headdim,
|
760 |
-
ATOMIC_ADD=True,
|
761 |
-
BIAS_TYPE=BIAS_TYPE,
|
762 |
-
IS_CAUSAL=IS_CAUSAL,
|
763 |
-
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
764 |
-
EVEN_M=EVEN_M,
|
765 |
-
EVEN_N=EVEN_N,
|
766 |
-
EVEN_HEADDIM=EVEN_HEADDIM,
|
767 |
-
BLOCK_M=BLOCK_M,
|
768 |
-
BLOCK_N=BLOCK_N)
|
769 |
|
770 |
|
771 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
@@ -776,8 +595,7 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
776 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
777 |
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
778 |
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
779 |
-
assert q.dtype in [torch.float16,
|
780 |
-
torch.bfloat16], 'Only support fp16 and bf16'
|
781 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
782 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
783 |
|
@@ -796,86 +614,40 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
796 |
else:
|
797 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
798 |
' or (seqlen_q, seqlen_k)')
|
799 |
-
|
800 |
-
|
801 |
-
elif bias.shape[:2] == (batch, 1):
|
802 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
803 |
-
elif bias.shape[:2] == (1, 1):
|
804 |
-
bias = repeat(bias, '1 h ... -> b h ...', b=batch)
|
805 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
806 |
-
assert bias.shape[:2] == (
|
807 |
-
batch, nheads
|
808 |
-
), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
|
809 |
-
assert bias is not None # for type checking
|
810 |
-
bias_strides = (bias.stride(0), bias.stride(1),
|
811 |
-
bias.stride(2)) if has_bias else (0, 0, 0)
|
812 |
|
813 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
814 |
-
lse = torch.empty((batch, nheads, seqlen_q_rounded),
|
815 |
-
|
816 |
-
dtype=torch.float32)
|
817 |
-
tmp = torch.empty((batch, nheads, seqlen_q_rounded),
|
818 |
-
device=q.device,
|
819 |
-
dtype=torch.float32)
|
820 |
o = torch.empty_like(q)
|
821 |
|
822 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
823 |
-
|
824 |
-
|
825 |
-
grid = lambda META: (triton.cdiv(seqlen_q, META[
|
826 |
-
_fwd_kernel[grid](
|
827 |
-
q,
|
828 |
-
|
829 |
-
v,
|
830 |
-
bias,
|
831 |
-
o,
|
832 |
-
lse,
|
833 |
-
tmp,
|
834 |
softmax_scale,
|
835 |
-
q.stride(0),
|
836 |
-
|
837 |
-
|
838 |
-
k.stride(0),
|
839 |
-
k.stride(2),
|
840 |
-
k.stride(1),
|
841 |
-
v.stride(0),
|
842 |
-
v.stride(2),
|
843 |
-
v.stride(1),
|
844 |
*bias_strides,
|
845 |
-
o.stride(0),
|
846 |
-
|
847 |
-
|
848 |
-
nheads,
|
849 |
-
seqlen_q,
|
850 |
-
seqlen_k,
|
851 |
-
seqlen_q_rounded,
|
852 |
-
d,
|
853 |
-
seqlen_q // 32,
|
854 |
-
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
855 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
856 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
857 |
-
bias_type,
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
# num_warps=num_warps,
|
862 |
-
# num_stages=1,
|
863 |
)
|
864 |
return o, lse, softmax_scale # softmax_scale could have been updated
|
865 |
|
866 |
|
867 |
-
def _flash_attn_backward(do,
|
868 |
-
q,
|
869 |
-
k,
|
870 |
-
v,
|
871 |
-
o,
|
872 |
-
lse,
|
873 |
-
dq,
|
874 |
-
dk,
|
875 |
-
dv,
|
876 |
-
bias=None,
|
877 |
-
causal=False,
|
878 |
-
softmax_scale=None):
|
879 |
# Make sure that the last dimension is contiguous
|
880 |
if do.stride(-1) != 1:
|
881 |
do = do.contiguous()
|
@@ -894,23 +666,13 @@ def _flash_attn_backward(do,
|
|
894 |
# delta = torch.zeros_like(lse)
|
895 |
|
896 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
897 |
-
grid = lambda META: (triton.cdiv(seqlen_q, META[
|
898 |
-
_bwd_preprocess_do_o_dot[grid](
|
899 |
-
o,
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
o.stride(1),
|
905 |
-
do.stride(0),
|
906 |
-
do.stride(2),
|
907 |
-
do.stride(1),
|
908 |
-
nheads,
|
909 |
-
seqlen_q,
|
910 |
-
seqlen_q_rounded,
|
911 |
-
d,
|
912 |
-
BLOCK_M=128,
|
913 |
-
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
914 |
)
|
915 |
|
916 |
has_bias = bias is not None
|
@@ -927,71 +689,32 @@ def _flash_attn_backward(do,
|
|
927 |
else:
|
928 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
929 |
' or (seqlen_q, seqlen_k)')
|
930 |
-
|
931 |
-
|
932 |
-
elif bias.shape[:2] == (batch, 1):
|
933 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
934 |
-
elif bias.shape[:2] == (1, 1):
|
935 |
-
bias = repeat(bias, '1 h ... -> b h ...', b=batch)
|
936 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
937 |
-
assert bias.shape[:2] == (
|
938 |
-
batch, nheads
|
939 |
-
), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
|
940 |
-
assert bias is not None # type checking
|
941 |
-
bias_strides = (bias.stride(0), bias.stride(1),
|
942 |
-
bias.stride(2)) if has_bias else (0, 0, 0)
|
943 |
|
944 |
# BLOCK_M = 128
|
945 |
# BLOCK_N = 64
|
946 |
# num_warps = 4
|
947 |
-
grid = lambda META: (triton.cdiv(seqlen_k, META[
|
948 |
-
|
949 |
-
_bwd_kernel[grid](
|
950 |
-
q,
|
951 |
-
|
952 |
-
|
953 |
-
bias,
|
954 |
-
do,
|
955 |
-
dq_accum,
|
956 |
-
dk,
|
957 |
-
dv,
|
958 |
-
lse,
|
959 |
-
delta,
|
960 |
softmax_scale,
|
961 |
-
q.stride(0),
|
962 |
-
|
963 |
-
|
964 |
-
k.stride(0),
|
965 |
-
k.stride(2),
|
966 |
-
k.stride(1),
|
967 |
-
v.stride(0),
|
968 |
-
v.stride(2),
|
969 |
-
v.stride(1),
|
970 |
*bias_strides,
|
971 |
-
do.stride(0),
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
dk.stride(0),
|
978 |
-
dk.stride(2),
|
979 |
-
dk.stride(1),
|
980 |
-
dv.stride(0),
|
981 |
-
dv.stride(2),
|
982 |
-
dv.stride(1),
|
983 |
-
nheads,
|
984 |
-
seqlen_q,
|
985 |
-
seqlen_k,
|
986 |
-
seqlen_q_rounded,
|
987 |
-
d,
|
988 |
-
seqlen_q // 32,
|
989 |
-
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
990 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
991 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
992 |
-
bias_type,
|
993 |
-
causal,
|
994 |
-
BLOCK_HEADDIM,
|
995 |
# SEQUENCE_PARALLEL=False,
|
996 |
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
997 |
# num_warps=num_warps,
|
@@ -1000,31 +723,23 @@ def _flash_attn_backward(do,
|
|
1000 |
dq.copy_(dq_accum)
|
1001 |
|
1002 |
|
1003 |
-
class
|
1004 |
|
1005 |
@staticmethod
|
1006 |
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
1007 |
-
"""
|
1008 |
-
|
1009 |
-
Args:
|
1010 |
-
ctx: autograd context
|
1011 |
qkv: (batch, seqlen, 3, nheads, headdim)
|
1012 |
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
1013 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
1014 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
1015 |
-
causal (bool): whether to incorporate causal attention masking
|
1016 |
-
softmax_scale (float, optional): scale factor for softmax
|
1017 |
"""
|
1018 |
# Make sure that the last dimension is contiguous
|
1019 |
if qkv.stride(-1) != 1:
|
1020 |
qkv = qkv.contiguous()
|
1021 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
1022 |
-
qkv[:, :, 0],
|
1023 |
-
|
1024 |
-
|
1025 |
-
bias=bias,
|
1026 |
-
causal=causal,
|
1027 |
-
softmax_scale=softmax_scale)
|
1028 |
ctx.save_for_backward(qkv, o, lse, bias)
|
1029 |
ctx.causal = causal
|
1030 |
return o
|
@@ -1032,53 +747,75 @@ class _FlashAttnQKVPackedFunc(torch.autograd.Function):
|
|
1032 |
@staticmethod
|
1033 |
def backward(ctx, do):
|
1034 |
qkv, o, lse, bias = ctx.saved_tensors
|
1035 |
-
assert not ctx.needs_input_grad[
|
1036 |
-
1], 'FlashAttention does not support bias gradient yet'
|
1037 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
1038 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
1039 |
with torch.inference_mode():
|
1040 |
dqkv = torch.empty_like(qkv)
|
1041 |
-
_flash_attn_backward(do,
|
1042 |
-
|
1043 |
-
|
1044 |
-
qkv[:, :, 2],
|
1045 |
-
o,
|
1046 |
-
lse,
|
1047 |
-
dqkv[:, :, 0],
|
1048 |
-
dqkv[:, :, 1],
|
1049 |
-
dqkv[:, :, 2],
|
1050 |
-
bias=bias,
|
1051 |
-
causal=ctx.causal,
|
1052 |
-
softmax_scale=ctx.softmax_scale)
|
1053 |
return dqkv, None, None, None
|
1054 |
|
1055 |
|
1056 |
-
flash_attn_qkvpacked_func =
|
1057 |
|
1058 |
|
1059 |
-
class
|
1060 |
|
1061 |
@staticmethod
|
1062 |
-
def forward(ctx, q,
|
1063 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1064 |
|
1065 |
-
|
1066 |
-
|
|
|
|
|
|
|
|
|
1067 |
q: (batch_size, seqlen_q, nheads, headdim)
|
1068 |
-
k: (batch_size, seqlen_k, nheads, headdim)
|
1069 |
-
v: (batch_size, seqlen_k, nheads, headdim)
|
1070 |
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
1071 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
1072 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
1073 |
-
causal (bool): whether to incorporate causal attention masking
|
1074 |
-
softmax_scale (float, optional): scale factor for softmax
|
1075 |
"""
|
1076 |
# Make sure that the last dimension is contiguous
|
1077 |
-
q, k, v = [
|
1078 |
-
x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]
|
1079 |
-
]
|
1080 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
1081 |
-
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
|
|
1082 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
1083 |
ctx.causal = causal
|
1084 |
return o
|
@@ -1086,27 +823,16 @@ class _FlashAttnFunc(torch.autograd.Function):
|
|
1086 |
@staticmethod
|
1087 |
def backward(ctx, do):
|
1088 |
q, k, v, o, lse, bias = ctx.saved_tensors
|
1089 |
-
assert not ctx.needs_input_grad[
|
1090 |
-
3], 'FlashAttention does not support bias gradient yet'
|
1091 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
1092 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
1093 |
with torch.inference_mode():
|
1094 |
dq = torch.empty_like(q)
|
1095 |
dk = torch.empty_like(k)
|
1096 |
dv = torch.empty_like(v)
|
1097 |
-
_flash_attn_backward(do,
|
1098 |
-
|
1099 |
-
k,
|
1100 |
-
v,
|
1101 |
-
o,
|
1102 |
-
lse,
|
1103 |
-
dq,
|
1104 |
-
dk,
|
1105 |
-
dv,
|
1106 |
-
bias=bias,
|
1107 |
-
causal=ctx.causal,
|
1108 |
-
softmax_scale=ctx.softmax_scale)
|
1109 |
return dq, dk, dv, None, None, None
|
1110 |
|
1111 |
|
1112 |
-
flash_attn_func =
|
|
|
1 |
# Copyright 2022 MosaicML Examples authors
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
+
"""
|
5 |
+
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
6 |
+
update imports to use 'triton_pre_mlir'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
*Experimental* implementation of FlashAttention in Triton.
|
9 |
+
Tested with triton==2.0.0.dev20221202.
|
10 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
11 |
+
other than 64:
|
12 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
13 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
14 |
+
|
15 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
16 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
17 |
|
|
|
27 |
small batch size * nheads.
|
28 |
|
29 |
Caution:
|
30 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
31 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
32 |
+
- This implementation has only been tested on A100.
|
33 |
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
34 |
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
35 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
36 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
37 |
that there are none left for other head dimensions.
|
38 |
+
|
39 |
Differences between this Triton version and the CUDA version:
|
40 |
- Triton version doesn't support dropout.
|
41 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
42 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
43 |
+
than CUDA forward + backward.
|
44 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
45 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
46 |
"""
|
47 |
|
48 |
import math
|
49 |
|
50 |
import torch
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
import triton_pre_mlir as triton
|
53 |
+
import triton_pre_mlir.language as tl
|
54 |
+
|
55 |
+
|
56 |
+
# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
|
57 |
+
# @triton.autotune(
|
58 |
+
# configs=[
|
59 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
|
60 |
+
# # This config has a race condition when EVEN_M == False, disabling it for now.
|
61 |
+
# # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
|
62 |
+
# ],
|
63 |
+
# key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
|
64 |
+
# )
|
65 |
+
@triton.heuristics(
|
66 |
+
{
|
67 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
68 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
69 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
70 |
+
}
|
71 |
+
)
|
72 |
@triton.jit
|
73 |
def _fwd_kernel(
|
74 |
+
Q, K, V, Bias, Out,
|
75 |
+
Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
|
|
|
|
|
|
|
|
|
|
76 |
softmax_scale,
|
77 |
+
stride_qb, stride_qh, stride_qm,
|
78 |
+
stride_kb, stride_kh, stride_kn,
|
79 |
+
stride_vb, stride_vh, stride_vn,
|
80 |
+
stride_bb, stride_bh, stride_bm,
|
81 |
+
stride_ob, stride_oh, stride_om,
|
82 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
|
83 |
+
CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
BIAS_TYPE: tl.constexpr,
|
85 |
IS_CAUSAL: tl.constexpr,
|
86 |
BLOCK_HEADDIM: tl.constexpr,
|
87 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
88 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
|
|
|
|
|
|
|
89 |
):
|
90 |
start_m = tl.program_id(0)
|
91 |
off_hb = tl.program_id(1)
|
|
|
102 |
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
103 |
# https://github.com/openai/triton/issues/741
|
104 |
# I'm seeing a tiny bit of difference (5-7us)
|
105 |
+
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
106 |
+
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
107 |
+
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
|
|
|
|
|
|
108 |
if BIAS_TYPE == 'vector':
|
109 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
110 |
elif BIAS_TYPE == 'matrix':
|
111 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
|
|
|
|
|
|
|
112 |
# initialize pointer to m and l
|
113 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
114 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
115 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
116 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
117 |
# load q: it will stay in SRAM throughout
|
118 |
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
|
|
126 |
if EVEN_HEADDIM:
|
127 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
128 |
else:
|
129 |
+
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
|
|
|
|
130 |
other=0.0)
|
131 |
# loop over k, v and update accumulator
|
132 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
|
|
133 |
for start_n in range(0, end_n, BLOCK_N):
|
134 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
135 |
# -- compute qk ----
|
|
|
137 |
if EVEN_HEADDIM:
|
138 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
139 |
else:
|
140 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
|
|
|
141 |
else:
|
142 |
if EVEN_HEADDIM:
|
143 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
|
|
|
144 |
other=0.0)
|
145 |
else:
|
146 |
k = tl.load(k_ptrs + start_n * stride_kn,
|
147 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
148 |
other=0.0)
|
149 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
150 |
qk += tl.dot(q, k, trans_b=True)
|
151 |
# Trying to combine the two masks seem to make the result wrong
|
152 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
153 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
|
|
154 |
if IS_CAUSAL:
|
155 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
|
|
156 |
if BIAS_TYPE != 'none':
|
157 |
if BIAS_TYPE == 'vector':
|
158 |
if EVEN_N:
|
159 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
160 |
else:
|
161 |
+
bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32)
|
|
|
|
|
162 |
bias = bias[None, :]
|
163 |
elif BIAS_TYPE == 'matrix':
|
164 |
if EVEN_M & EVEN_N:
|
165 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
166 |
else:
|
167 |
bias = tl.load(b_ptrs + start_n,
|
168 |
+
mask=(offs_m[:, None] < seqlen_q)
|
169 |
+
& ((start_n + offs_n)[None, :] < seqlen_k),
|
170 |
other=0.0).to(tl.float32)
|
|
|
|
|
|
|
171 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
172 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
173 |
# to multiply with softmax_scale here.
|
|
|
192 |
if EVEN_HEADDIM:
|
193 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
194 |
else:
|
195 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
|
|
|
196 |
else:
|
197 |
if EVEN_HEADDIM:
|
198 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
|
|
|
199 |
other=0.0)
|
200 |
else:
|
201 |
v = tl.load(v_ptrs + start_n * stride_vn,
|
202 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
203 |
other=0.0)
|
204 |
p = p.to(v.dtype)
|
205 |
acc_o += tl.dot(p, v)
|
|
|
221 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
222 |
tl.store(lse_ptrs, lse_i)
|
223 |
# initialize pointers to output
|
224 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
225 |
+
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
|
|
|
226 |
if EVEN_M:
|
227 |
if EVEN_HEADDIM:
|
228 |
tl.store(out_ptrs, acc_o)
|
|
|
232 |
if EVEN_HEADDIM:
|
233 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
234 |
else:
|
235 |
+
tl.store(out_ptrs, acc_o,
|
236 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
|
|
|
|
237 |
|
238 |
|
239 |
@triton.jit
|
240 |
def _bwd_preprocess_do_o_dot(
|
241 |
+
Out, DO, Delta,
|
242 |
+
stride_ob, stride_oh, stride_om,
|
243 |
+
stride_dob, stride_doh, stride_dom,
|
244 |
+
nheads, seqlen_q, seqlen_q_rounded, headdim,
|
245 |
+
BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
):
|
247 |
start_m = tl.program_id(0)
|
248 |
off_hb = tl.program_id(1)
|
|
|
252 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
253 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
254 |
# load
|
255 |
+
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
|
256 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
257 |
+
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
|
258 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
|
|
|
|
|
|
|
|
|
|
259 |
delta = tl.sum(o * do, axis=1)
|
260 |
# write-back
|
261 |
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
262 |
|
263 |
|
264 |
+
@triton.jit
|
265 |
+
def _bwd_store_dk_dv(
|
266 |
+
dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
|
267 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
268 |
+
):
|
269 |
+
# [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
|
270 |
+
# if we just call tl.store(dv_ptrs), there's a race condition
|
271 |
+
if EVEN_N & EVEN_M:
|
272 |
+
if EVEN_HEADDIM:
|
273 |
+
tl.store(dv_ptrs, dv)
|
274 |
+
tl.store(dk_ptrs, dk)
|
275 |
+
else:
|
276 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
277 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
278 |
+
else:
|
279 |
+
if EVEN_HEADDIM:
|
280 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
281 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
282 |
+
else:
|
283 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
284 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
285 |
+
|
286 |
+
|
287 |
@triton.jit
|
288 |
def _bwd_kernel_one_col_block(
|
289 |
start_n,
|
290 |
+
Q, K, V, Bias,
|
291 |
+
DO, DQ, DK, DV,
|
292 |
+
LSE, D,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
softmax_scale,
|
294 |
+
stride_qm, stride_kn, stride_vn, stride_bm,
|
295 |
+
stride_dom, stride_dqm, stride_dkn, stride_dvn,
|
296 |
+
seqlen_q, seqlen_k, headdim,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
ATOMIC_ADD: tl.constexpr,
|
298 |
BIAS_TYPE: tl.constexpr,
|
299 |
IS_CAUSAL: tl.constexpr,
|
300 |
BLOCK_HEADDIM: tl.constexpr,
|
301 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
302 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
|
|
|
|
|
|
|
303 |
):
|
304 |
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
|
305 |
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
|
|
318 |
b_ptrs = Bias + offs_n
|
319 |
elif BIAS_TYPE == 'matrix':
|
320 |
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
|
|
|
|
321 |
# initialize dv and dk
|
322 |
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
323 |
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
324 |
+
# There seems to be some problem with Triton pipelining that makes results wrong for
|
325 |
+
# headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop
|
326 |
+
# may have zero step, and pipelining with the bias matrix could screw it up.
|
327 |
+
# So we just exit early.
|
328 |
+
if begin_m >= seqlen_q:
|
329 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
330 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
331 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
|
332 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
333 |
+
return
|
334 |
# k and v stay in SRAM throughout
|
335 |
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
|
336 |
# if we just call tl.load(k_ptrs), we get the wrong output!
|
|
|
346 |
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
347 |
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
348 |
else:
|
349 |
+
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
|
|
350 |
other=0.0)
|
351 |
+
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
|
|
352 |
other=0.0)
|
353 |
# loop over rows
|
354 |
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
|
|
361 |
q = tl.load(q_ptrs)
|
362 |
else:
|
363 |
if EVEN_HEADDIM:
|
364 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
|
|
|
|
365 |
else:
|
366 |
+
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
|
367 |
+
& (offs_d[None, :] < headdim), other=0.0)
|
|
|
|
|
368 |
# recompute p = softmax(qk, dim=-1).T
|
369 |
qk = tl.dot(q, k, trans_b=True)
|
370 |
# Trying to combine the two masks seem to make the result wrong
|
371 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
372 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
|
373 |
if IS_CAUSAL:
|
374 |
+
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
|
|
|
375 |
if BIAS_TYPE != 'none':
|
376 |
+
tl.debug_barrier() # Race condition otherwise
|
377 |
if BIAS_TYPE == 'vector':
|
378 |
if EVEN_N:
|
379 |
bias = tl.load(b_ptrs).to(tl.float32)
|
380 |
else:
|
381 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
|
|
382 |
bias = bias[None, :]
|
383 |
elif BIAS_TYPE == 'matrix':
|
384 |
if EVEN_M & EVEN_N:
|
385 |
bias = tl.load(b_ptrs).to(tl.float32)
|
386 |
else:
|
387 |
bias = tl.load(b_ptrs,
|
388 |
+
mask=(offs_m_curr[:, None] < seqlen_q)
|
389 |
+
& (offs_n[None, :] < seqlen_k),
|
390 |
other=0.0).to(tl.float32)
|
|
|
|
|
|
|
391 |
qk = qk * softmax_scale + bias
|
392 |
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
|
393 |
# Also wrong for headdim=64.
|
|
|
407 |
do = tl.load(do_ptrs)
|
408 |
else:
|
409 |
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
|
410 |
+
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
|
411 |
+
& (offs_d[None, :] < headdim), other=0.0)
|
|
|
|
|
412 |
# if EVEN_M:
|
413 |
# if EVEN_HEADDIM:
|
414 |
# do = tl.load(do_ptrs)
|
|
|
440 |
# compute dk = dot(ds.T, q)
|
441 |
dk += tl.dot(ds, q, trans_a=True)
|
442 |
# compute dq
|
443 |
+
if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix'
|
444 |
+
tl.debug_barrier()
|
445 |
if not ATOMIC_ADD:
|
446 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
447 |
+
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
|
448 |
dq += tl.dot(ds, k)
|
449 |
+
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
|
450 |
else:
|
451 |
if EVEN_HEADDIM:
|
452 |
+
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0,
|
453 |
+
eviction_policy="evict_last")
|
|
|
|
|
454 |
dq += tl.dot(ds, k)
|
455 |
+
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
|
456 |
+
eviction_policy="evict_last")
|
|
|
|
|
457 |
else:
|
458 |
dq = tl.load(dq_ptrs,
|
459 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
460 |
+
other=0.0, eviction_policy="evict_last")
|
|
|
|
|
461 |
dq += tl.dot(ds, k)
|
462 |
+
tl.store(dq_ptrs, dq,
|
463 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
464 |
+
eviction_policy="evict_last")
|
|
|
|
|
465 |
else: # If we're parallelizing across the seqlen_k dimension
|
466 |
dq = tl.dot(ds, k)
|
467 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
468 |
tl.atomic_add(dq_ptrs, dq)
|
469 |
else:
|
470 |
if EVEN_HEADDIM:
|
471 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
|
|
|
|
472 |
else:
|
473 |
+
tl.atomic_add(dq_ptrs, dq,
|
474 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
|
|
|
|
475 |
# increment pointers
|
476 |
dq_ptrs += BLOCK_M * stride_dqm
|
477 |
q_ptrs += BLOCK_M * stride_qm
|
|
|
481 |
# write-back
|
482 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
483 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
484 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
|
485 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
|
488 |
def init_to_zero(name):
|
|
|
491 |
|
492 |
@triton.autotune(
|
493 |
configs=[
|
494 |
+
triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
495 |
+
triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
# Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
|
497 |
# # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
|
498 |
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
|
500 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
501 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
502 |
],
|
503 |
+
key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
|
504 |
+
)
|
505 |
+
@triton.heuristics(
|
506 |
+
{
|
507 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
508 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
509 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
510 |
+
}
|
511 |
)
|
|
|
|
|
|
|
|
|
|
|
512 |
@triton.jit
|
513 |
def _bwd_kernel(
|
514 |
+
Q, K, V, Bias,
|
515 |
+
DO, DQ, DK, DV,
|
516 |
+
LSE, D,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
softmax_scale,
|
518 |
+
stride_qb, stride_qh, stride_qm,
|
519 |
+
stride_kb, stride_kh, stride_kn,
|
520 |
+
stride_vb, stride_vh, stride_vn,
|
521 |
+
stride_bb, stride_bh, stride_bm,
|
522 |
+
stride_dob, stride_doh, stride_dom,
|
523 |
+
stride_dqb, stride_dqh, stride_dqm,
|
524 |
+
stride_dkb, stride_dkh, stride_dkn,
|
525 |
+
stride_dvb, stride_dvh, stride_dvn,
|
526 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
|
527 |
+
CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
BIAS_TYPE: tl.constexpr,
|
529 |
IS_CAUSAL: tl.constexpr,
|
530 |
BLOCK_HEADDIM: tl.constexpr,
|
531 |
SEQUENCE_PARALLEL: tl.constexpr,
|
532 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
533 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
|
|
|
|
|
|
|
534 |
):
|
535 |
off_hb = tl.program_id(1)
|
536 |
off_b = off_hb // nheads
|
|
|
551 |
if not SEQUENCE_PARALLEL:
|
552 |
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
553 |
for start_n in range(0, num_block_n):
|
554 |
+
_bwd_kernel_one_col_block(
|
555 |
+
start_n,
|
556 |
+
Q, K, V, Bias,
|
557 |
+
DO, DQ, DK, DV,
|
558 |
+
LSE, D,
|
559 |
+
softmax_scale,
|
560 |
+
stride_qm, stride_kn, stride_vn, stride_bm,
|
561 |
+
stride_dom, stride_dqm, stride_dkn, stride_dvn,
|
562 |
+
seqlen_q, seqlen_k, headdim,
|
563 |
+
ATOMIC_ADD=False,
|
564 |
+
BIAS_TYPE=BIAS_TYPE,
|
565 |
+
IS_CAUSAL=IS_CAUSAL,
|
566 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
567 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
|
568 |
+
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
|
569 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
else:
|
571 |
start_n = tl.program_id(0)
|
572 |
+
_bwd_kernel_one_col_block(
|
573 |
+
start_n,
|
574 |
+
Q, K, V, Bias,
|
575 |
+
DO, DQ, DK, DV,
|
576 |
+
LSE, D,
|
577 |
+
softmax_scale,
|
578 |
+
stride_qm, stride_kn, stride_vn, stride_bm,
|
579 |
+
stride_dom, stride_dqm, stride_dkn, stride_dvn,
|
580 |
+
seqlen_q, seqlen_k, headdim,
|
581 |
+
ATOMIC_ADD=True,
|
582 |
+
BIAS_TYPE=BIAS_TYPE,
|
583 |
+
IS_CAUSAL=IS_CAUSAL,
|
584 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
585 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
|
586 |
+
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
|
587 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
588 |
|
589 |
|
590 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
|
595 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
596 |
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
597 |
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
598 |
+
assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
|
|
|
599 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
600 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
601 |
|
|
|
614 |
else:
|
615 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
616 |
' or (seqlen_q, seqlen_k)')
|
617 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
618 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
|
620 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
621 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
622 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
|
|
|
|
|
|
|
|
623 |
o = torch.empty_like(q)
|
624 |
|
625 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
626 |
+
BLOCK = 128
|
627 |
+
num_warps = 4 if d <= 64 else 8
|
628 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
629 |
+
_fwd_kernel[grid](
|
630 |
+
q, k, v, bias, o,
|
631 |
+
lse, tmp,
|
|
|
|
|
|
|
|
|
|
|
632 |
softmax_scale,
|
633 |
+
q.stride(0), q.stride(2), q.stride(1),
|
634 |
+
k.stride(0), k.stride(2), k.stride(1),
|
635 |
+
v.stride(0), v.stride(2), v.stride(1),
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
*bias_strides,
|
637 |
+
o.stride(0), o.stride(2), o.stride(1),
|
638 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
|
639 |
+
seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
641 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
642 |
+
bias_type, causal, BLOCK_HEADDIM,
|
643 |
+
BLOCK_M=BLOCK, BLOCK_N=BLOCK,
|
644 |
+
num_warps=num_warps,
|
645 |
+
num_stages=1,
|
|
|
|
|
646 |
)
|
647 |
return o, lse, softmax_scale # softmax_scale could have been updated
|
648 |
|
649 |
|
650 |
+
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
# Make sure that the last dimension is contiguous
|
652 |
if do.stride(-1) != 1:
|
653 |
do = do.contiguous()
|
|
|
666 |
# delta = torch.zeros_like(lse)
|
667 |
|
668 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
669 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
670 |
+
_bwd_preprocess_do_o_dot[grid](
|
671 |
+
o, do, delta,
|
672 |
+
o.stride(0), o.stride(2), o.stride(1),
|
673 |
+
do.stride(0), do.stride(2), do.stride(1),
|
674 |
+
nheads, seqlen_q, seqlen_q_rounded, d,
|
675 |
+
BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
676 |
)
|
677 |
|
678 |
has_bias = bias is not None
|
|
|
689 |
else:
|
690 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
691 |
' or (seqlen_q, seqlen_k)')
|
692 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
693 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
694 |
|
695 |
# BLOCK_M = 128
|
696 |
# BLOCK_N = 64
|
697 |
# num_warps = 4
|
698 |
+
grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
|
699 |
+
batch * nheads)
|
700 |
+
_bwd_kernel[grid](
|
701 |
+
q, k, v, bias,
|
702 |
+
do, dq_accum, dk, dv,
|
703 |
+
lse, delta,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
704 |
softmax_scale,
|
705 |
+
q.stride(0), q.stride(2), q.stride(1),
|
706 |
+
k.stride(0), k.stride(2), k.stride(1),
|
707 |
+
v.stride(0), v.stride(2), v.stride(1),
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
*bias_strides,
|
709 |
+
do.stride(0), do.stride(2), do.stride(1),
|
710 |
+
dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
|
711 |
+
dk.stride(0), dk.stride(2), dk.stride(1),
|
712 |
+
dv.stride(0), dv.stride(2), dv.stride(1),
|
713 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
|
714 |
+
seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
716 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
717 |
+
bias_type, causal, BLOCK_HEADDIM,
|
|
|
|
|
718 |
# SEQUENCE_PARALLEL=False,
|
719 |
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
720 |
# num_warps=num_warps,
|
|
|
723 |
dq.copy_(dq_accum)
|
724 |
|
725 |
|
726 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
727 |
|
728 |
@staticmethod
|
729 |
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
730 |
+
"""
|
|
|
|
|
|
|
731 |
qkv: (batch, seqlen, 3, nheads, headdim)
|
732 |
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
733 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
734 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
|
|
|
|
735 |
"""
|
736 |
# Make sure that the last dimension is contiguous
|
737 |
if qkv.stride(-1) != 1:
|
738 |
qkv = qkv.contiguous()
|
739 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
740 |
+
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal,
|
741 |
+
softmax_scale=softmax_scale
|
742 |
+
)
|
|
|
|
|
|
|
743 |
ctx.save_for_backward(qkv, o, lse, bias)
|
744 |
ctx.causal = causal
|
745 |
return o
|
|
|
747 |
@staticmethod
|
748 |
def backward(ctx, do):
|
749 |
qkv, o, lse, bias = ctx.saved_tensors
|
750 |
+
assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
|
|
|
751 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
752 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
753 |
with torch.inference_mode():
|
754 |
dqkv = torch.empty_like(qkv)
|
755 |
+
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
|
756 |
+
dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
|
757 |
+
bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
758 |
return dqkv, None, None, None
|
759 |
|
760 |
|
761 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
762 |
|
763 |
|
764 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
765 |
|
766 |
@staticmethod
|
767 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
768 |
+
"""
|
769 |
+
q: (batch, seqlen_q, nheads, headdim)
|
770 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
771 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
772 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
773 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
774 |
+
"""
|
775 |
+
# Make sure that the last dimension is contiguous
|
776 |
+
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
777 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
778 |
+
q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale
|
779 |
+
)
|
780 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
781 |
+
ctx.causal = causal
|
782 |
+
return o
|
783 |
+
|
784 |
+
@staticmethod
|
785 |
+
def backward(ctx, do):
|
786 |
+
q, kv, o, lse, bias = ctx.saved_tensors
|
787 |
+
if len(ctx.needs_input_grad) >= 3:
|
788 |
+
assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
|
789 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
790 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
791 |
+
with torch.inference_mode():
|
792 |
+
dq = torch.empty_like(q)
|
793 |
+
dkv = torch.empty_like(kv)
|
794 |
+
_flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse,
|
795 |
+
dq, dkv[:, :, 0], dkv[:, :, 1],
|
796 |
+
bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
797 |
+
return dq, dkv, None, None, None
|
798 |
+
|
799 |
+
|
800 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
801 |
|
802 |
+
|
803 |
+
class FlashAttnFunc(torch.autograd.Function):
|
804 |
+
|
805 |
+
@staticmethod
|
806 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
807 |
+
"""
|
808 |
q: (batch_size, seqlen_q, nheads, headdim)
|
809 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
|
|
810 |
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
811 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
812 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
|
|
|
|
813 |
"""
|
814 |
# Make sure that the last dimension is contiguous
|
815 |
+
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
|
|
|
|
816 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
817 |
+
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
818 |
+
)
|
819 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
820 |
ctx.causal = causal
|
821 |
return o
|
|
|
823 |
@staticmethod
|
824 |
def backward(ctx, do):
|
825 |
q, k, v, o, lse, bias = ctx.saved_tensors
|
826 |
+
assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
|
|
|
827 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
828 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
829 |
with torch.inference_mode():
|
830 |
dq = torch.empty_like(q)
|
831 |
dk = torch.empty_like(k)
|
832 |
dv = torch.empty_like(v)
|
833 |
+
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
|
834 |
+
bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
835 |
return dq, dk, dv, None, None, None
|
836 |
|
837 |
|
838 |
+
flash_attn_func = FlashAttnFunc.apply
|