File size: 11,033 Bytes
22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 22bd597 046fa10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
"""A HuggingFace-style model configuration."""
import warnings
from typing import Any, Dict, Optional, Union
from transformers import PretrainedConfig
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
class MPTConfig(PretrainedConfig):
model_type = 'mpt'
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', verbose: Optional[int]=None, **kwargs: Any):
"""The MPT configuration class.
Args:
d_model (int): The size of the embedding dimension of the model.
n_heads (int): The number of attention heads.
n_layers (int): The number of layers in the model.
expansion_ratio (int): The ratio of the up/down scale in the ffn.
max_seq_len (int): The maximum sequence length of the model.
vocab_size (int): The size of the vocabulary.
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
emb_pdrop (float): The dropout probability for the embedding layer.
learned_pos_emb (bool): Whether to use learned positional embeddings
attn_config (Dict): A dictionary used to configure the model's attention module:
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
attn_pdrop (float): The dropout probability for the attention layers.
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
this value.
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
use the default scale of ``1/sqrt(d_keys)``.
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
which sub-sequence each token belongs to.
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
alibi (bool): Whether to use the alibi bias instead of position embeddings.
alibi_bias_max (int): The maximum value of the alibi bias.
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
ffn_config (Dict): A dictionary used to configure the model's ffn module:
ffn_type (str): type of ffn to use. Options: mptmlp, te_ln_mlp
init_device (str): The device to use for parameter initialization.
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
no_bias (bool): Whether to use bias in all layers.
verbose (int): The verbosity level. 0 is silent.
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
norm_type (str): choose type of norm to use
use_cache (bool): Whether or not the model should return the last key/values attentions
init_config (Dict): A dictionary used to configure the model initialization:
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
init_std (float): The standard deviation of the normal distribution used to initialize the model,
if using the baseline_ parameter initialization scheme.
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
---
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
"""
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.expansion_ratio = expansion_ratio
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.learned_pos_emb = learned_pos_emb
self.attn_config = attn_config
self.ffn_config = ffn_config
self.init_device = init_device
self.logit_scale = logit_scale
self.no_bias = no_bias
self.embedding_fraction = embedding_fraction
self.norm_type = norm_type
self.use_cache = use_cache
self.init_config = init_config
self.fc_type = fc_type
if verbose is not None:
warnings.warn(DeprecationWarning('verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.'))
if 'name' in kwargs:
del kwargs['name']
if 'loss_fn' in kwargs:
del kwargs['loss_fn']
if self.attn_config.get('alibi', False):
self.learned_pos_emb = False
warnings.warn(f'alibi is turned on, setting `learned_pos_emb` to `False.`')
super().__init__(**kwargs)
self._validate_config()
def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
for (k, v) in config_defaults.items():
if k not in config:
config[k] = v
return config
def _validate_config(self) -> None:
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
if self.d_model % self.n_heads != 0:
raise ValueError('d_model must be divisible by n_heads')
if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
raise NotImplementedError('alibi only implemented with torch and triton attention.')
if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
if self.init_config.get('name', None) is None:
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
if not self.learned_pos_emb and (not self.attn_config['alibi']):
warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi.')
if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
try:
import transformer_engine.pytorch as te
del te
except:
raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
if self.ffn_config['ffn_type'] == 'mptmlp':
self.ffn_config['fc_type'] = self.fc_type
elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
self.ffn_config['bias'] = not self.no_bias |