File size: 3,184 Bytes
4360306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_keras_callback
model-index:
- name: EyesNewFiveclassTryAfterYolo-agument
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# EyesNewFiveclassTryAfterYolo-agument
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0039
- Train Accuracy: 0.9688
- Train Top-3-accuracy: 1.0
- Validation Loss: 0.0779
- Validation Accuracy: 0.9688
- Validation Top-3-accuracy: 0.9961
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1270, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.5486 | 0.9492 | 0.9674 | 0.1847 | 0.9492 | 1.0 | 0 |
| 0.1032 | 0.9492 | 0.9980 | 0.1171 | 0.9492 | 0.9961 | 1 |
| 0.0359 | 0.9688 | 1.0 | 0.1081 | 0.9688 | 0.9961 | 2 |
| 0.0179 | 0.9688 | 1.0 | 0.0958 | 0.9688 | 0.9961 | 3 |
| 0.0121 | 0.9688 | 1.0 | 0.0749 | 0.9688 | 0.9961 | 4 |
| 0.0074 | 0.9688 | 1.0 | 0.0765 | 0.9688 | 0.9961 | 5 |
| 0.0066 | 0.9688 | 1.0 | 0.0812 | 0.9688 | 0.9961 | 6 |
| 0.0054 | 0.9688 | 1.0 | 0.0823 | 0.9688 | 0.9961 | 7 |
| 0.0046 | 0.9688 | 1.0 | 0.0777 | 0.9688 | 0.9961 | 8 |
| 0.0039 | 0.9688 | 1.0 | 0.0779 | 0.9688 | 0.9961 | 9 |
### Framework versions
- Transformers 4.42.4
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|