motheecreator commited on
Commit
1a1a6dc
·
verified ·
1 Parent(s): f8f9aa5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -9
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: motheecreator/vit-Facial-Expression-Recognition
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -15,24 +15,31 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # vit-Facial-Expression-Recognition
17
 
18
- This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
  - Loss: 0.4503
21
  - Accuracy: 0.8434
22
 
23
  ## Model description
24
 
25
- More information needed
26
 
27
- ## Intended uses & limitations
 
 
 
 
 
 
 
28
 
29
- More information needed
30
 
31
- ## Training and evaluation data
32
 
33
- More information needed
34
-
35
- ## Training procedure
 
36
 
37
  ### Training hyperparameters
38
 
 
1
  ---
2
  license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
15
 
16
  # vit-Facial-Expression-Recognition
17
 
18
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [FER 2013](https://www.kaggle.com/datasets/msambare/fer2013),[MMI Facial Expression Database](https://mmifacedb.eu/), and [AffectNet dataset](https://www.kaggle.com/datasets/noamsegal/affectnet-training-data) datasets.
19
  It achieves the following results on the evaluation set:
20
  - Loss: 0.4503
21
  - Accuracy: 0.8434
22
 
23
  ## Model description
24
 
25
+ The vit-face-expression model is a Vision Transformer fine-tuned for the task of facial emotion recognition.
26
 
27
+ It is trained on the FER2013, MMI facial Expression, and AffectNet datasets, which consist of facial images categorized into seven different emotions:
28
+ - Angry
29
+ - Disgust
30
+ - Fear
31
+ - Happy
32
+ - Sad
33
+ - Surprise
34
+ - Neutral
35
 
 
36
 
37
+ ## Data Preprocessing
38
 
39
+ The input images are preprocessed before being fed into the model. The preprocessing steps include:
40
+ - **Resizing:** Images are resized to the specified input size.
41
+ - **Normalization:** Pixel values are normalized to a specific range.
42
+ - **Data Augmentation:** Random transformations such as rotations, flips, and zooms are applied to augment the training dataset.
43
 
44
  ### Training hyperparameters
45