Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,146 @@
|
|
1 |
---
|
2 |
license: llama2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama2
|
3 |
+
inference:
|
4 |
+
parameters:
|
5 |
+
do_sample: false
|
6 |
+
max_length: 200
|
7 |
+
widget:
|
8 |
+
- text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):"
|
9 |
+
example_title: "read test.csv"
|
10 |
+
- text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):"
|
11 |
+
example_title: "get _amount columns"
|
12 |
+
- text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.\n\n### Input:\nHere is the database schema that the SQL query will run on:\nCREATE TABLE rideshare (\n hvfhs_license_num varchar,\n dispatching_base_num varchar,\n originating_base_num varchar,\n request_datetime timestamp,\n on_scene_datetime timestamp,\n pickup_datetime timestamp,\n dropoff_datetime timestamp,\n trip_miles double,\n trip_time bigint,\n\n);\n\n### Question:\nget longest trip in december 2022\n\n### Response (use duckdb shorthand if possible):"
|
13 |
+
example_title: "taxi trips"
|
14 |
---
|
15 |
+
|
16 |
+
# DuckDB-NSQL-7B (GGUF)
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.
|
21 |
+
|
22 |
+
In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs.
|
23 |
+
|
24 |
+
## Training Data
|
25 |
+
|
26 |
+
200k DuckDB text-to-SQL pairs, synthetically generated using [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), guided by the DuckDB v0.9.2 documentation. And text-to-SQL pairs from [NSText2SQL](https://huggingface.co/datasets/NumbersStation/NSText2SQL) that were transpiled to DuckDB SQL using [sqlglot](https://github.com/tobymao/sqlglot).
|
27 |
+
|
28 |
+
## Evaluation Data
|
29 |
+
|
30 |
+
We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available [here](https://github.com/NumbersStationAI/DuckDB-NSQL/).
|
31 |
+
|
32 |
+
## Training Procedure
|
33 |
+
|
34 |
+
DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We fine-tuned for 10 epochs.
|
35 |
+
|
36 |
+
## Intended Use and Limitations
|
37 |
+
|
38 |
+
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs.
|
39 |
+
In contrast to existing text-to-SQL models, the SQL generation is not contrained to `SELECT` statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions.
|
40 |
+
|
41 |
+
## How to Use
|
42 |
+
|
43 |
+
Example 1:
|
44 |
+
|
45 |
+
```python
|
46 |
+
import torch
|
47 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16)
|
50 |
+
|
51 |
+
text = """### Instruction:
|
52 |
+
Your task is to generate valid duckdb SQL to answer the following question.
|
53 |
+
|
54 |
+
### Input:
|
55 |
+
|
56 |
+
### Question:
|
57 |
+
create a new table called tmp from test.csv
|
58 |
+
|
59 |
+
### Response (use duckdb shorthand if possible):
|
60 |
+
"""
|
61 |
+
|
62 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
63 |
+
|
64 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
65 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
66 |
+
```
|
67 |
+
|
68 |
+
Example 2:
|
69 |
+
|
70 |
+
```python
|
71 |
+
import torch
|
72 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
|
74 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16)
|
75 |
+
|
76 |
+
text = """### Instruction:
|
77 |
+
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.
|
78 |
+
|
79 |
+
### Input:
|
80 |
+
Here is the database schema that the SQL query will run on:
|
81 |
+
CREATE TABLE taxi (
|
82 |
+
VendorID bigint,
|
83 |
+
tpep_pickup_datetime timestamp,
|
84 |
+
tpep_dropoff_datetime timestamp,
|
85 |
+
passenger_count double,
|
86 |
+
trip_distance double,
|
87 |
+
fare_amount double,
|
88 |
+
extra double,
|
89 |
+
tip_amount double,
|
90 |
+
tolls_amount double,
|
91 |
+
improvement_surcharge double,
|
92 |
+
total_amount double,
|
93 |
+
);
|
94 |
+
|
95 |
+
### Question:
|
96 |
+
get all columns ending with _amount from taxi table
|
97 |
+
|
98 |
+
### Response (use duckdb shorthand if possible):"""
|
99 |
+
|
100 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
101 |
+
|
102 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
103 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
104 |
+
```
|
105 |
+
|
106 |
+
Example 3:
|
107 |
+
|
108 |
+
```python
|
109 |
+
import torch
|
110 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
|
112 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16)
|
113 |
+
|
114 |
+
text = """### Instruction:
|
115 |
+
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.
|
116 |
+
|
117 |
+
### Input:
|
118 |
+
Here is the database schema that the SQL query will run on:
|
119 |
+
CREATE TABLE rideshare (
|
120 |
+
hvfhs_license_num varchar,
|
121 |
+
dispatching_base_num varchar,
|
122 |
+
originating_base_num varchar,
|
123 |
+
request_datetime timestamp,
|
124 |
+
on_scene_datetime timestamp,
|
125 |
+
pickup_datetime timestamp,
|
126 |
+
dropoff_datetime timestamp,
|
127 |
+
trip_miles double,
|
128 |
+
trip_time bigint,
|
129 |
+
|
130 |
+
);
|
131 |
+
|
132 |
+
### Question:
|
133 |
+
get longest trip in december 2022
|
134 |
+
|
135 |
+
### Response (use duckdb shorthand if possible):
|
136 |
+
"""
|
137 |
+
|
138 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
139 |
+
|
140 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
141 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
142 |
+
```
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/DuckDB-NSQL).
|