motionsh commited on
Commit
7ece8c4
·
1 Parent(s): 7ad7462

Upload biomat_app.py

Browse files
Files changed (1) hide show
  1. biomat_app.py +130 -0
biomat_app.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import torch
4
+
5
+ from torch.utils.data import DataLoader
6
+ from config import get_config_universal
7
+ from dataset import DataSet
8
+ from datasetbuilder import DataSetBuilder
9
+ from test import Test
10
+ from visualization.steamlit_plot import plot_kinematic_predictions
11
+
12
+ dataset_name = 'camargo'
13
+ config = get_config_universal(dataset_name)
14
+
15
+ # model_file = 'transformertsai_g1g2rardsasd_g1g2rardsasd.pt'
16
+ # model = torch.load(os.path.join('./caches/trained_model/v05', model_file))
17
+ sensor_options = {'Thigh & Shank & Foot': ['foot', 'shank', 'thigh'],
18
+ 'Thigh & Shank': ['thigh', 'shank'],
19
+ 'Thigh & Foot': ['thigh', 'foot'],
20
+ 'Shank & Foot': ['shank', 'foot'],
21
+ 'Thigh': ['thigh'],
22
+ 'Shank': ['shank'],
23
+ 'Foot': ['foot']}
24
+
25
+ @st.cache
26
+ def fetch_data(config):
27
+ dataset_handler = DataSet(config, load_dataset=True)
28
+ kihadataset_train, kihadataset_test = dataset_handler.run_dataset_split_loop()
29
+ kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'] = dataset_handler.run_segmentation(
30
+ kihadataset_train['x'],
31
+ kihadataset_train['y'], kihadataset_train['labels'])
32
+ kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'] = dataset_handler.run_segmentation(
33
+ kihadataset_test['x'],
34
+ kihadataset_test['y'], kihadataset_test['labels'])
35
+ train_dataset = DataSetBuilder(kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'],
36
+ transform_method=config['data_transformer'], scaler=None, noise=None)
37
+ test_dataset = DataSetBuilder(kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'],
38
+ transform_method=config['data_transformer'], scaler=train_dataset.scaler,
39
+ noise=None)
40
+ test_dataloader = DataLoader(dataset=test_dataset, batch_size=config['batch_size'], shuffle=False)
41
+ return test_dataloader, kihadataset_test
42
+
43
+ # @st.cache()
44
+ def fetch_model(sensor_name, model_name):
45
+ device = torch.device('cpu')
46
+ model_names = {'CNNLSTM':'hernandez2021cnnlstm', 'BiLSTM':'bilstm', 'BioMAT': 'transformertsai'}
47
+ sensor_names = {'Thigh & Shank & Foot':'thighshankfoot',
48
+ 'Thigh & Shank':'thighshank',
49
+ 'Thigh & Foot':'thighfoot',
50
+ 'Shank & Foot':'shankfoot',
51
+ 'Thigh':'thigh',
52
+ 'Shank':'shank',
53
+ 'Foot':'foot'}
54
+ if sensor_names[sensor_name]=='thighshankfoot':
55
+ model_file = model_names[model_name] + '_g1g2rardsasd_g1g2rardsasd.pt'
56
+ else:
57
+ model_file = sensor_names[sensor_name] + '_' + model_names[model_name]+'_g1g2rardsasd_g1g2rardsasd.pt'
58
+ # model = torch.load(os.path.join('./caches/trained_model/v05', model_file), map_location=device)
59
+ st.write(model_file)
60
+ model = torch.load(os.path.join('./caches/trained_model/v05', model_file))
61
+ return model
62
+
63
+ # @st.cache
64
+ def fetch_predictions(model):
65
+ test_handler = Test()
66
+ y_pred, y_true, loss = test_handler.run_testing(config, model, test_dataloader=test_dataloader)
67
+ y_true = y_true.detach().cpu().clone().numpy()
68
+ y_pred = y_pred.detach().cpu().clone().numpy()
69
+ return y_pred, y_true, loss
70
+
71
+ # sensor_name = 'Thigh & Shank & Foot'
72
+ # config['sensor_sensor'] = sensor_options[sensor_name]
73
+ # test_dataloader, kihadataset_test = fetch_data(config)
74
+ # model = fetch_model(sensor_name, 'BioMAT')
75
+ # y_pred, y_true, loss = fetch_predictions(model)
76
+ # fig = plot_kinematic_predictions(y_true, y_pred, kihadataset_test['labels'], 'AB24',
77
+ # selected_activities= ['LevelGround Walking', 'Ramp Ascent', 'Ramp Descent', 'Stair Ascent', 'Stair Descent'],
78
+ # selected_index_to_plot=1)
79
+ st.set_page_config(layout="wide")
80
+ # col1, col2, col3 = st.columns(3)
81
+ # with col2:
82
+ st.title('BioMAT:Biomechanical Multi-Activity Transformer Model for Joint Kinematic Prediction From IMUs')
83
+ # st.info('If you change the sensor configeration, press rerun', icon="ℹ️")
84
+
85
+ st.sidebar.title('Sensor Configuration')
86
+ selected_sensor = st.sidebar.selectbox('Pick one', ['Thigh & Shank & Foot',
87
+ 'Thigh & Shank',
88
+ 'Thigh & Foot',
89
+ 'Shank & Foot',
90
+ 'Thigh',
91
+ 'Shank',
92
+ 'Foot'])
93
+
94
+ config['selected_sensors'] = sensor_options[selected_sensor]
95
+ print(config)
96
+
97
+ st.sidebar.title('Model Configuration')
98
+ selected_model = st.sidebar.selectbox('Pick one', ['CNNLSTM',
99
+ 'BiLSTM',
100
+ 'BioMAT'])
101
+
102
+ st.sidebar.title('Subject')
103
+ selected_subject = st.sidebar.slider('Pick a Subject Number', min_value=23, max_value=25, step=1)
104
+
105
+ st.sidebar.title('Activity')
106
+ selected_activities = st.sidebar.multiselect('Pick Output Activities',
107
+ ['LevelGround Walking', 'Ramp Ascent', 'Ramp Descent', 'Stair Ascent', 'Stair Descent'])
108
+
109
+ index_to_plot = st.sidebar.number_input('Enter a number between 0 and 5', min_value=0, max_value=5)
110
+
111
+ if st.sidebar.button('Predict'):
112
+ with st.spinner('Data is loading...'):
113
+ test_dataloader, kihadataset_test = fetch_data(config)
114
+ st.success('Data is loaded!')
115
+ with st.spinner('Model is loading...'):
116
+ model = fetch_model(selected_sensor, selected_model)
117
+ st.success('Model is loaded!')
118
+ with st.spinner('Prediction ...'):
119
+ y_pred, y_true, loss = fetch_predictions(model)
120
+ st.success('Prediction is Completed!')
121
+ st.write('plot ...')
122
+ subject = 'AB' + str(selected_subject)
123
+ fig = plot_kinematic_predictions(y_true, y_pred, kihadataset_test['labels'], subject,
124
+ selected_activities=selected_activities, selected_index_to_plot=index_to_plot)
125
+ st.plotly_chart(fig, use_container_width=True)
126
+ #
127
+
128
+
129
+
130
+