--- license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer-b0-finetuned-segments-pv_v1_normalized_p100_4batch results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/huggingface/runs/g4m4ysqz) # segformer-b0-finetuned-segments-pv_v1_normalized_p100_4batch This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Mean Iou: 0.8483 - Precision: 0.9169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:| | 0.0127 | 0.9989 | 229 | 0.0092 | 0.7982 | 0.8641 | | 0.0077 | 1.9978 | 458 | 0.0094 | 0.7871 | 0.8456 | | 0.006 | 2.9967 | 687 | 0.0067 | 0.8140 | 0.9089 | | 0.0051 | 4.0 | 917 | 0.0058 | 0.8358 | 0.8713 | | 0.0045 | 4.9989 | 1146 | 0.0059 | 0.8258 | 0.8761 | | 0.0042 | 5.9978 | 1375 | 0.0058 | 0.8415 | 0.9018 | | 0.0036 | 6.9967 | 1604 | 0.0051 | 0.8513 | 0.9049 | | 0.0038 | 8.0 | 1834 | 0.0062 | 0.8226 | 0.9256 | | 0.004 | 8.9989 | 2063 | 0.0057 | 0.8358 | 0.8913 | | 0.0035 | 9.9978 | 2292 | 0.0053 | 0.8485 | 0.9079 | | 0.0037 | 10.9967 | 2521 | 0.0059 | 0.8192 | 0.9056 | | 0.0038 | 12.0 | 2751 | 0.0054 | 0.8487 | 0.8921 | | 0.0033 | 12.9989 | 2980 | 0.0053 | 0.8541 | 0.9086 | | 0.0028 | 13.9978 | 3209 | 0.0055 | 0.8551 | 0.8985 | | 0.0026 | 14.9967 | 3438 | 0.0060 | 0.8483 | 0.9085 | | 0.0026 | 16.0 | 3668 | 0.0057 | 0.8495 | 0.9076 | | 0.0024 | 16.9989 | 3897 | 0.0058 | 0.8442 | 0.9083 | | 0.0038 | 17.9978 | 4126 | 0.0066 | 0.8113 | 0.8910 | | 0.0031 | 18.9967 | 4355 | 0.0062 | 0.8488 | 0.9108 | | 0.0026 | 20.0 | 4585 | 0.0058 | 0.8575 | 0.9126 | | 0.0024 | 20.9989 | 4814 | 0.0057 | 0.8580 | 0.9119 | | 0.0025 | 21.9978 | 5043 | 0.0059 | 0.8505 | 0.8957 | | 0.0031 | 22.9967 | 5272 | 0.0062 | 0.8472 | 0.9135 | | 0.0022 | 24.0 | 5502 | 0.0055 | 0.8598 | 0.9147 | | 0.0023 | 24.9989 | 5731 | 0.0058 | 0.8621 | 0.9090 | | 0.0023 | 25.9978 | 5960 | 0.0064 | 0.8498 | 0.9094 | | 0.0023 | 26.9967 | 6189 | 0.0067 | 0.8428 | 0.9137 | | 0.0021 | 28.0 | 6419 | 0.0063 | 0.8527 | 0.9076 | | 0.002 | 28.9989 | 6648 | 0.0065 | 0.8509 | 0.9187 | | 0.002 | 29.9978 | 6877 | 0.0074 | 0.8424 | 0.9179 | | 0.002 | 30.9967 | 7106 | 0.0065 | 0.8577 | 0.9116 | | 0.0019 | 32.0 | 7336 | 0.0067 | 0.8547 | 0.9141 | | 0.0019 | 32.9989 | 7565 | 0.0072 | 0.8519 | 0.9168 | | 0.0019 | 33.9978 | 7794 | 0.0067 | 0.8569 | 0.9148 | | 0.0019 | 34.9967 | 8023 | 0.0070 | 0.8544 | 0.9139 | | 0.0017 | 36.0 | 8253 | 0.0072 | 0.8510 | 0.9124 | | 0.0018 | 36.9989 | 8482 | 0.0081 | 0.8425 | 0.9164 | | 0.0017 | 37.9978 | 8711 | 0.0073 | 0.8512 | 0.9155 | | 0.0018 | 38.9967 | 8940 | 0.0073 | 0.8495 | 0.9164 | | 0.0018 | 39.9564 | 9160 | 0.0074 | 0.8483 | 0.9169 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1