--- license: other base_model: nvidia/segformer-b1-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_fp results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/huggingface/runs/kxwmffd1) # segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_fp This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 - Mean Iou: 0.9589 - Precision: 0.9794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:| | 0.0641 | 0.9989 | 229 | 0.0082 | 0.8288 | 0.8881 | | 0.0077 | 1.9978 | 458 | 0.0070 | 0.8228 | 0.8650 | | 0.0058 | 2.9967 | 687 | 0.0042 | 0.8827 | 0.9339 | | 0.005 | 4.0 | 917 | 0.0039 | 0.8849 | 0.9172 | | 0.0044 | 4.9989 | 1146 | 0.0071 | 0.7938 | 0.8122 | | 0.0049 | 5.9978 | 1375 | 0.0036 | 0.8914 | 0.9402 | | 0.0045 | 6.9967 | 1604 | 0.0042 | 0.8729 | 0.9280 | | 0.0038 | 8.0 | 1834 | 0.0035 | 0.8889 | 0.9433 | | 0.0034 | 8.9989 | 2063 | 0.0030 | 0.9038 | 0.9357 | | 0.0032 | 9.9978 | 2292 | 0.0026 | 0.9115 | 0.9501 | | 0.003 | 10.9967 | 2521 | 0.0026 | 0.9136 | 0.9482 | | 0.0031 | 12.0 | 2751 | 0.0026 | 0.9132 | 0.9461 | | 0.0029 | 12.9989 | 2980 | 0.0026 | 0.9144 | 0.9493 | | 0.0026 | 13.9978 | 3209 | 0.0023 | 0.9202 | 0.9414 | | 0.0025 | 14.9967 | 3438 | 0.0024 | 0.9175 | 0.9456 | | 0.003 | 16.0 | 3668 | 0.0032 | 0.8926 | 0.9640 | | 0.0035 | 16.9989 | 3897 | 0.0041 | 0.8741 | 0.9007 | | 0.0029 | 17.9978 | 4126 | 0.0022 | 0.9229 | 0.9598 | | 0.0024 | 18.9967 | 4355 | 0.0022 | 0.9239 | 0.9549 | | 0.0022 | 20.0 | 4585 | 0.0020 | 0.9308 | 0.9601 | | 0.0021 | 20.9989 | 4814 | 0.0019 | 0.9325 | 0.9689 | | 0.0021 | 21.9978 | 5043 | 0.0019 | 0.9334 | 0.9630 | | 0.002 | 22.9967 | 5272 | 0.0018 | 0.9368 | 0.9631 | | 0.002 | 24.0 | 5502 | 0.0019 | 0.9333 | 0.9684 | | 0.002 | 24.9989 | 5731 | 0.0018 | 0.9381 | 0.9613 | | 0.0022 | 25.9978 | 5960 | 0.0018 | 0.9369 | 0.9610 | | 0.0019 | 26.9967 | 6189 | 0.0017 | 0.9413 | 0.9677 | | 0.0018 | 28.0 | 6419 | 0.0016 | 0.9429 | 0.9629 | | 0.0017 | 28.9989 | 6648 | 0.0016 | 0.9444 | 0.9642 | | 0.0017 | 29.9978 | 6877 | 0.0015 | 0.9465 | 0.9741 | | 0.0016 | 30.9967 | 7106 | 0.0014 | 0.9492 | 0.9718 | | 0.0016 | 32.0 | 7336 | 0.0014 | 0.9499 | 0.9687 | | 0.0015 | 32.9989 | 7565 | 0.0015 | 0.9469 | 0.9737 | | 0.0016 | 33.9978 | 7794 | 0.0014 | 0.9514 | 0.9721 | | 0.0015 | 34.9967 | 8023 | 0.0013 | 0.9542 | 0.9719 | | 0.0014 | 36.0 | 8253 | 0.0013 | 0.9546 | 0.9694 | | 0.0014 | 36.9989 | 8482 | 0.0012 | 0.9569 | 0.9740 | | 0.0014 | 37.9978 | 8711 | 0.0012 | 0.9579 | 0.9781 | | 0.0014 | 38.9967 | 8940 | 0.0012 | 0.9584 | 0.9759 | | 0.0013 | 39.9564 | 9160 | 0.0012 | 0.9589 | 0.9794 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1