mouadenna commited on
Commit
6b6a2aa
1 Parent(s): a97c951

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,87 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: nvidia/segformer-b1-finetuned-ade-512-512
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ metrics:
9
+ - precision
10
+ model-index:
11
+ - name: segformer-b1-finetuned-segments-pv_v1_x3_normalized_p100_4batch
12
+ results: []
13
  ---
14
 
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/huggingface/runs/ktaai3s5)
19
+ # segformer-b1-finetuned-segments-pv_v1_x3_normalized_p100_4batch
20
+
21
+ This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0064
24
+ - Mean Iou: 0.8466
25
+ - Precision: 0.9220
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 0.0004
45
+ - train_batch_size: 4
46
+ - eval_batch_size: 4
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 16
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.001
53
+ - num_epochs: 40
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
59
+ |:-------------:|:-------:|:-----:|:---------------:|:--------:|:---------:|
60
+ | 0.0084 | 0.9993 | 687 | 0.0063 | 0.8160 | 0.8736 |
61
+ | 0.007 | 2.0 | 1375 | 0.0060 | 0.8262 | 0.9006 |
62
+ | 0.006 | 2.9993 | 2062 | 0.0066 | 0.8072 | 0.9214 |
63
+ | 0.0049 | 4.0 | 2750 | 0.0054 | 0.8283 | 0.9287 |
64
+ | 0.004 | 4.9993 | 3437 | 0.0070 | 0.8326 | 0.9068 |
65
+ | 0.0042 | 6.0 | 4125 | 0.0053 | 0.8318 | 0.8834 |
66
+ | 0.004 | 6.9993 | 4812 | 0.0053 | 0.8370 | 0.8893 |
67
+ | 0.0037 | 8.0 | 5500 | 0.0075 | 0.8049 | 0.9404 |
68
+ | 0.0036 | 8.9993 | 6187 | 0.0074 | 0.8222 | 0.9106 |
69
+ | 0.0033 | 10.0 | 6875 | 0.0061 | 0.8297 | 0.9161 |
70
+ | 0.0031 | 10.9993 | 7562 | 0.0055 | 0.8427 | 0.9086 |
71
+ | 0.0033 | 12.0 | 8250 | 0.0052 | 0.8437 | 0.9152 |
72
+ | 0.0037 | 12.9993 | 8937 | 0.0055 | 0.8387 | 0.9186 |
73
+ | 0.0028 | 14.0 | 9625 | 0.0060 | 0.8416 | 0.9137 |
74
+ | 0.0027 | 14.9993 | 10312 | 0.0052 | 0.8489 | 0.9212 |
75
+ | 0.003 | 16.0 | 11000 | 0.0065 | 0.8393 | 0.9158 |
76
+ | 0.0025 | 16.9993 | 11687 | 0.0063 | 0.8347 | 0.9245 |
77
+ | 0.0027 | 18.0 | 12375 | 0.0065 | 0.8439 | 0.9093 |
78
+ | 0.0032 | 18.9993 | 13062 | 0.0056 | 0.8495 | 0.9186 |
79
+ | 0.0024 | 20.0 | 13750 | 0.0064 | 0.8466 | 0.9220 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.42.3
85
+ - Pytorch 2.1.2
86
+ - Datasets 2.20.0
87
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/segformer-b1-finetuned-ade-512-512",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "PV"
33
+ },
34
+ "image_size": 224,
35
+ "initializer_range": 0.02,
36
+ "label2id": {
37
+ "PV": 1,
38
+ "unlabeled": 0
39
+ },
40
+ "layer_norm_eps": 1e-06,
41
+ "mlp_ratios": [
42
+ 4,
43
+ 4,
44
+ 4,
45
+ 4
46
+ ],
47
+ "model_type": "segformer",
48
+ "num_attention_heads": [
49
+ 1,
50
+ 2,
51
+ 5,
52
+ 8
53
+ ],
54
+ "num_channels": 3,
55
+ "num_encoder_blocks": 4,
56
+ "patch_sizes": [
57
+ 7,
58
+ 3,
59
+ 3,
60
+ 3
61
+ ],
62
+ "reshape_last_stage": true,
63
+ "semantic_loss_ignore_index": 255,
64
+ "sr_ratios": [
65
+ 8,
66
+ 4,
67
+ 2,
68
+ 1
69
+ ],
70
+ "strides": [
71
+ 4,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "torch_dtype": "float32",
77
+ "transformers_version": "4.42.3"
78
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57b894b8c580f9fc141a1e601f6db7a2b1ef05fe8082fd2bb497c3ad874a85cf
3
+ size 54737376
runs/Jul27_20-51-01_8211d03cf03b/events.out.tfevents.1722113465.8211d03cf03b.25.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e85ef87a8b0d70c3a30d30ac9bdc676d3c582d3e442817402a2ac5a82e7470e
3
+ size 42306
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e7b7257c990c7a5e6eb9baee2ba11f697fdf6219dc344c812ac515d59be635
3
+ size 5240