File size: 4,934 Bytes
4a8f5c8
230e10c
f87985c
63cc7c2
 
 
 
f87985c
 
63cc7c2
 
 
4a8f5c8
 
63cc7c2
 
4a8f5c8
f87985c
63cc7c2
4a8f5c8
63cc7c2
 
f87985c
 
 
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
63cc7c2
 
 
 
 
 
 
 
 
 
f87985c
63cc7c2
4a8f5c8
63cc7c2
4a8f5c8
f87985c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8f5c8
 
63cc7c2
4a8f5c8
63cc7c2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: other
base_model: nvidia/segformer-b2-finetuned-ade-512-512
tags:
- vision
- image-segmentation
- generated_from_trainer
metrics:
- precision
model-index:
- name: segformer-b2-finetuned-segments-pv_v1_normalized_p100_4batch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/huggingface/runs/mmtwbyor)
# segformer-b2-finetuned-segments-pv_v1_normalized_p100_4batch

This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b2-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Mean Iou: 0.0
- Precision: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.001
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Precision |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|
| 0.01          | 0.9989  | 229  | 0.0088          | 0.8105   | 0.8817    |
| 0.0062        | 1.9978  | 458  | 0.0075          | 0.8201   | 0.8726    |
| 0.0049        | 2.9967  | 687  | 0.0063          | 0.8297   | 0.8867    |
| 0.0053        | 4.0     | 917  | 0.0055          | 0.8425   | 0.8845    |
| 0.0037        | 4.9989  | 1146 | 0.0058          | 0.8380   | 0.8823    |
| 0.0039        | 5.9978  | 1375 | 0.0211          | 0.6114   | 0.9766    |
| 0.0037        | 6.9967  | 1604 | 0.3403          | 0.0      | 1.0       |
| 0.0002        | 8.0     | 1834 | nan             | 0.0      | 1.0       |
| 0.0003        | 8.9989  | 2063 | nan             | 0.0      | 1.0       |
| 0.0864        | 9.9978  | 2292 | nan             | 0.0      | 1.0       |
| 0.0035        | 10.9967 | 2521 | nan             | 0.0      | 1.0       |
| 0.0045        | 12.0    | 2751 | nan             | 0.0      | 1.0       |
| 0.0039        | 12.9989 | 2980 | nan             | 0.0      | 1.0       |
| 0.8023        | 13.9978 | 3209 | nan             | 0.0      | 1.0       |
| 0.0041        | 14.9967 | 3438 | nan             | 0.0      | 1.0       |
| 7.0711        | 16.0    | 3668 | nan             | 0.0      | 1.0       |
| 0.0039        | 16.9989 | 3897 | nan             | 0.0      | 1.0       |
| 19.4385       | 17.9978 | 4126 | nan             | 0.0      | 1.0       |
| 0.0001        | 18.9967 | 4355 | nan             | 0.0      | 1.0       |
| 1.7398        | 20.0    | 4585 | nan             | 0.0      | 1.0       |
| 0.2879        | 20.9989 | 4814 | nan             | 0.0      | 1.0       |
| 0.0005        | 21.9978 | 5043 | nan             | 0.0      | 1.0       |
| 5.8398        | 22.9967 | 5272 | nan             | 0.0      | 1.0       |
| 0.0004        | 24.0    | 5502 | nan             | 0.0      | 1.0       |
| 0.0002        | 24.9989 | 5731 | nan             | 0.0      | 1.0       |
| 0.0016        | 25.9978 | 5960 | nan             | 0.0      | 1.0       |
| 0.0034        | 26.9967 | 6189 | nan             | 0.0      | 1.0       |
| 0.0004        | 28.0    | 6419 | nan             | 0.0      | 1.0       |
| 0.0036        | 28.9989 | 6648 | nan             | 0.0      | 1.0       |
| 0.0314        | 29.9978 | 6877 | nan             | 0.0      | 1.0       |
| 0.0921        | 30.9967 | 7106 | nan             | 0.0      | 1.0       |
| 89.1025       | 32.0    | 7336 | nan             | 0.0      | 1.0       |
| 0.0073        | 32.9989 | 7565 | nan             | 0.0      | 1.0       |
| 0.0126        | 33.9978 | 7794 | nan             | 0.0      | 1.0       |
| 0.0094        | 34.9967 | 8023 | nan             | 0.0      | 1.0       |
| 0.0001        | 36.0    | 8253 | nan             | 0.0      | 1.0       |
| 4.3987        | 36.9989 | 8482 | nan             | 0.0      | 1.0       |
| 0.0005        | 37.9978 | 8711 | nan             | 0.0      | 1.0       |
| 0.0202        | 38.9967 | 8940 | nan             | 0.0      | 1.0       |
| 0.1612        | 39.9564 | 9160 | nan             | 0.0      | 1.0       |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1