--- license: other base_model: nvidia/segformer-b2-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer-b2-finetuned-segments-pv_v1_normalized_p100_4batch results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/huggingface/runs/mmtwbyor) # segformer-b2-finetuned-segments-pv_v1_normalized_p100_4batch This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b2-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: nan - Mean Iou: 0.0 - Precision: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:| | 0.01 | 0.9989 | 229 | 0.0088 | 0.8105 | 0.8817 | | 0.0062 | 1.9978 | 458 | 0.0075 | 0.8201 | 0.8726 | | 0.0049 | 2.9967 | 687 | 0.0063 | 0.8297 | 0.8867 | | 0.0053 | 4.0 | 917 | 0.0055 | 0.8425 | 0.8845 | | 0.0037 | 4.9989 | 1146 | 0.0058 | 0.8380 | 0.8823 | | 0.0039 | 5.9978 | 1375 | 0.0211 | 0.6114 | 0.9766 | | 0.0037 | 6.9967 | 1604 | 0.3403 | 0.0 | 1.0 | | 0.0002 | 8.0 | 1834 | nan | 0.0 | 1.0 | | 0.0003 | 8.9989 | 2063 | nan | 0.0 | 1.0 | | 0.0864 | 9.9978 | 2292 | nan | 0.0 | 1.0 | | 0.0035 | 10.9967 | 2521 | nan | 0.0 | 1.0 | | 0.0045 | 12.0 | 2751 | nan | 0.0 | 1.0 | | 0.0039 | 12.9989 | 2980 | nan | 0.0 | 1.0 | | 0.8023 | 13.9978 | 3209 | nan | 0.0 | 1.0 | | 0.0041 | 14.9967 | 3438 | nan | 0.0 | 1.0 | | 7.0711 | 16.0 | 3668 | nan | 0.0 | 1.0 | | 0.0039 | 16.9989 | 3897 | nan | 0.0 | 1.0 | | 19.4385 | 17.9978 | 4126 | nan | 0.0 | 1.0 | | 0.0001 | 18.9967 | 4355 | nan | 0.0 | 1.0 | | 1.7398 | 20.0 | 4585 | nan | 0.0 | 1.0 | | 0.2879 | 20.9989 | 4814 | nan | 0.0 | 1.0 | | 0.0005 | 21.9978 | 5043 | nan | 0.0 | 1.0 | | 5.8398 | 22.9967 | 5272 | nan | 0.0 | 1.0 | | 0.0004 | 24.0 | 5502 | nan | 0.0 | 1.0 | | 0.0002 | 24.9989 | 5731 | nan | 0.0 | 1.0 | | 0.0016 | 25.9978 | 5960 | nan | 0.0 | 1.0 | | 0.0034 | 26.9967 | 6189 | nan | 0.0 | 1.0 | | 0.0004 | 28.0 | 6419 | nan | 0.0 | 1.0 | | 0.0036 | 28.9989 | 6648 | nan | 0.0 | 1.0 | | 0.0314 | 29.9978 | 6877 | nan | 0.0 | 1.0 | | 0.0921 | 30.9967 | 7106 | nan | 0.0 | 1.0 | | 89.1025 | 32.0 | 7336 | nan | 0.0 | 1.0 | | 0.0073 | 32.9989 | 7565 | nan | 0.0 | 1.0 | | 0.0126 | 33.9978 | 7794 | nan | 0.0 | 1.0 | | 0.0094 | 34.9967 | 8023 | nan | 0.0 | 1.0 | | 0.0001 | 36.0 | 8253 | nan | 0.0 | 1.0 | | 4.3987 | 36.9989 | 8482 | nan | 0.0 | 1.0 | | 0.0005 | 37.9978 | 8711 | nan | 0.0 | 1.0 | | 0.0202 | 38.9967 | 8940 | nan | 0.0 | 1.0 | | 0.1612 | 39.9564 | 9160 | nan | 0.0 | 1.0 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1