Commit
·
9a0eda9
1
Parent(s):
25ccf50
update model card README.md
Browse files
README.md
CHANGED
@@ -14,10 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Rouge2 Precision: 0.
|
19 |
-
- Rouge2 Recall: 0.
|
20 |
-
- Rouge2 Fmeasure: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -42,32 +42,42 @@ The following hyperparameters were used during training:
|
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
-
- num_epochs:
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
51 |
-
| No log | 1.0 | 68 | 0.
|
52 |
-
| No log | 2.0 | 136 | 0.
|
53 |
-
| No log | 3.0 | 204 | 0.
|
54 |
-
| No log | 4.0 | 272 | 0.
|
55 |
-
| No log | 5.0 | 340 | 0.
|
56 |
-
| No log | 6.0 | 408 | 0.
|
57 |
-
| No log | 7.0 | 476 | 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1265
|
18 |
+
- Rouge2 Precision: 0.7737
|
19 |
+
- Rouge2 Recall: 0.1686
|
20 |
+
- Rouge2 Fmeasure: 0.2725
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 30
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
51 |
+
| No log | 1.0 | 68 | 0.7014 | 0.5788 | 0.1438 | 0.2267 |
|
52 |
+
| No log | 2.0 | 136 | 0.3643 | 0.6424 | 0.1388 | 0.2254 |
|
53 |
+
| No log | 3.0 | 204 | 0.2811 | 0.6499 | 0.1433 | 0.2319 |
|
54 |
+
| No log | 4.0 | 272 | 0.2344 | 0.6552 | 0.1401 | 0.2276 |
|
55 |
+
| No log | 5.0 | 340 | 0.2165 | 0.7083 | 0.1534 | 0.2485 |
|
56 |
+
| No log | 6.0 | 408 | 0.1950 | 0.6835 | 0.1498 | 0.2421 |
|
57 |
+
| No log | 7.0 | 476 | 0.1801 | 0.7303 | 0.1584 | 0.2562 |
|
58 |
+
| 0.5608 | 8.0 | 544 | 0.1784 | 0.7246 | 0.1565 | 0.2537 |
|
59 |
+
| 0.5608 | 9.0 | 612 | 0.1670 | 0.7308 | 0.1575 | 0.2552 |
|
60 |
+
| 0.5608 | 10.0 | 680 | 0.1619 | 0.7388 | 0.1587 | 0.2572 |
|
61 |
+
| 0.5608 | 11.0 | 748 | 0.1545 | 0.724 | 0.1551 | 0.2518 |
|
62 |
+
| 0.5608 | 12.0 | 816 | 0.1554 | 0.7271 | 0.1563 | 0.2534 |
|
63 |
+
| 0.5608 | 13.0 | 884 | 0.1472 | 0.7404 | 0.1624 | 0.2624 |
|
64 |
+
| 0.5608 | 14.0 | 952 | 0.1472 | 0.7508 | 0.1613 | 0.2616 |
|
65 |
+
| 0.1384 | 15.0 | 1020 | 0.1429 | 0.765 | 0.1651 | 0.2679 |
|
66 |
+
| 0.1384 | 16.0 | 1088 | 0.1416 | 0.7564 | 0.1626 | 0.2636 |
|
67 |
+
| 0.1384 | 17.0 | 1156 | 0.1365 | 0.7737 | 0.1653 | 0.2684 |
|
68 |
+
| 0.1384 | 18.0 | 1224 | 0.1344 | 0.7594 | 0.1639 | 0.2656 |
|
69 |
+
| 0.1384 | 19.0 | 1292 | 0.1356 | 0.7618 | 0.1667 | 0.2693 |
|
70 |
+
| 0.1384 | 20.0 | 1360 | 0.1339 | 0.7691 | 0.1673 | 0.2705 |
|
71 |
+
| 0.1384 | 21.0 | 1428 | 0.1335 | 0.7624 | 0.1646 | 0.267 |
|
72 |
+
| 0.1384 | 22.0 | 1496 | 0.1325 | 0.7691 | 0.1664 | 0.2694 |
|
73 |
+
| 0.0974 | 23.0 | 1564 | 0.1297 | 0.7612 | 0.1657 | 0.2679 |
|
74 |
+
| 0.0974 | 24.0 | 1632 | 0.1296 | 0.7628 | 0.1663 | 0.2691 |
|
75 |
+
| 0.0974 | 25.0 | 1700 | 0.1288 | 0.7601 | 0.1648 | 0.2667 |
|
76 |
+
| 0.0974 | 26.0 | 1768 | 0.1284 | 0.7633 | 0.1653 | 0.2679 |
|
77 |
+
| 0.0974 | 27.0 | 1836 | 0.1272 | 0.7684 | 0.1663 | 0.2696 |
|
78 |
+
| 0.0974 | 28.0 | 1904 | 0.1272 | 0.7729 | 0.1683 | 0.2722 |
|
79 |
+
| 0.0974 | 29.0 | 1972 | 0.1265 | 0.7765 | 0.169 | 0.2732 |
|
80 |
+
| 0.081 | 30.0 | 2040 | 0.1265 | 0.7737 | 0.1686 | 0.2725 |
|
81 |
|
82 |
|
83 |
### Framework versions
|