from typing import Dict, List, Any | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import requests | |
class EndpointHandler(): | |
def __init__(self, path=""): | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
""" | |
data args: | |
image_url (:obj: `str`): URL of the image to be captioned | |
Return: | |
A :obj:`list` | `dict`: will be serialized and returned | |
""" | |
# get inputs | |
image_url = data.pop("image_url", None) | |
# check if image_url exists | |
if image_url is None: | |
return [{"error": "image_url not provided"}] | |
# get image from URL | |
try: | |
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') | |
except: | |
return [{"error": "unable to load image from the provided URL"}] | |
# unconditional image captioning | |
inputs = self.processor(raw_image, return_tensors="pt") | |
# generate captions | |
out = self.model.generate(**inputs) | |
# return the generated captions | |
return [{"caption": self.processor.decode(out[0], skip_special_tokens=True)}] | |