File size: 18,071 Bytes
e7929ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from transformers import AutoTokenizer, AutoModelForSequenceClassification, get_linear_schedule_with_warmup
import datasets
import pandas as pd
import pyarrow
import pytorch_lightning as pl
import torchmetrics
import torch.nn as nn
import torch
import types
import multiprocessing
from utils.text_cleaning import clean_text_funcs


class RRUMDataset():
    scalar_features = ['channel_sim']
    _image_features = ['regret_thumbnail',
                       'recommendation_thumbnail']  # not used atm

    def __init__(self, data, with_transcript, cross_encoder_model_name_or_path, label_col="label", label_map=None, balance_label_counts=False, max_length=128, do_train_test_split=False, test_size=0.25, seed=42, keep_video_ids_for_predictions=False, encode_on_the_fly=False, clean_text=False, processing_batch_size=1000, processing_num_proc=1):
        self._with_transcript = with_transcript
        self.tokenizer = AutoTokenizer.from_pretrained(
            cross_encoder_model_name_or_path)
        self.label_col = label_col
        self.label_map = label_map
        self.balance_label_counts = balance_label_counts
        self.max_length = max_length
        self.seed = seed
        self.keep_video_ids_for_predictions = keep_video_ids_for_predictions
        self.clean_text = clean_text
        self.processing_batch_size = processing_batch_size
        self.processing_num_proc = multiprocessing.cpu_count(
        ) if not processing_num_proc else processing_num_proc

        self.text_types = ['title', 'description'] + \
            (['transcript'] if self._with_transcript else [])
        self._text_features = [
            'regret_title', 'recommendation_title', 'regret_description',
            'recommendation_description'] + (['regret_transcript', 'recommendation_transcript'] if self._with_transcript else [])

        # LOAD DATA INTO DATASET
        self.streaming_dataset = False
        if isinstance(data, pd.DataFrame):
            self.dataset = datasets.Dataset.from_pandas(data)
        elif isinstance(data, types.GeneratorType):
            examples_iterable = datasets.iterable_dataset.ExamplesIterable(
                self._streaming_generate_examples, {"iterable": data})
            self.dataset = datasets.IterableDataset(examples_iterable)
            self._stream_dataset_example = next(iter(self.dataset))
            self._stream_dataset_column_names = list(
                self._stream_dataset_example.keys())
            self.streaming_dataset = True
        elif isinstance(data, pyarrow.Table):
            self.dataset = datasets.Dataset(data)
        else:
            raise ValueError(
                f'Type of data is {type(data)} when pd.DataFrame, pyarrow.Table, or generator of pyarrow.RecordBatch is allowed')

        # PREPROCESS DATASET
        self._preprocess()

        # ENCODE DATASET
        self.train_dataset = None
        self.test_dataset = None
        if self.streaming_dataset:
            # IterableDataset doesn't have train_test_split method
            if self.label_col:
                self.train_dataset = self._encode_streaming(self.dataset)
                print('Streaming dataset available in .train_dataset')
            else:
                self.test_dataset = self._encode_streaming(self.dataset)
                print(
                    'Streaming dataset available in .test_dataset because label_col=None')
        else:
            # dataset into train_dataset and/or test_dataset
            if do_train_test_split:
                ds = self.dataset.train_test_split(
                    test_size=test_size, shuffle=True, seed=self.seed, stratify_by_column=self.label_col)
                self.train_dataset = ds['train']
                self.test_dataset = ds['test']
                print(
                    f'Dataset was splitted into train and test with test_size={test_size}')
            else:
                if self.label_col:
                    self.train_dataset = self.dataset
                else:
                    self.test_dataset = self.dataset

            if encode_on_the_fly:
                if self.train_dataset:
                    self.train_dataset.set_transform(self._encode_on_the_fly)
                    print('On-the-fly encoded dataset available in .train_dataset')
                if self.test_dataset:
                    self.test_dataset.set_transform(self._encode_on_the_fly)
                    print('On-the-fly encoded dataset available in .test_dataset')
            else:
                if self.train_dataset:
                    self.train_dataset = self._encode(self.train_dataset)
                    print('Pre-encoded dataset available in .train_dataset')
                if self.test_dataset:
                    self.test_dataset = self._encode(self.test_dataset)
                    print('Pre-encoded dataset available in .test_dataset')

    def __len__(self):
        if self.streaming_dataset:
            raise ValueError(
                f'Streaming dataset does not support len() method')
        return len(self.dataset)

    def __getitem__(self, index):
        if self.streaming_dataset:
            return next(iter(self.dataset))
        return self.dataset[index]

    def _streaming_generate_examples(self, iterable):
        id_ = 0
        # TODO: make sure GeneratorType is pyarrow.RecordBatch
        if isinstance(iterable, types.GeneratorType):
            for examples in iterable:
                for ex in examples.to_pylist():
                    yield id_, ex
                    id_ += 1

    def _preprocess(self):
        if self._with_transcript:
            self.dataset = self.dataset.filter(
                lambda example: example['regret_transcript'] is not None and example['recommendation_transcript'] is not None)
        else:
            self.dataset = self.dataset.filter(
                lambda example: example['regret_transcript'] is None or example['recommendation_transcript'] is None)
        if self.label_col:
            if self.streaming_dataset:
                if self.label_col in self._stream_dataset_column_names and isinstance(self._stream_dataset_example[self.label_col], str):
                    if not self.label_map:
                        raise ValueError(
                            f'"label_map" dict was not provided and is needed to encode string labels for streaming datasets')
                    # cast_column method had issues with streaming dataset
                    self.dataset = self.dataset.map(
                        self._streaming_rename_labels)
            else:
                if self.dataset.features[self.label_col].dtype == 'string':
                    if not self.label_map:
                        self.label_map = {k: v for v, k in enumerate(
                            self.dataset.unique(self.label_col))}
                    self.dataset = self.dataset.filter(
                        lambda example: example[self.label_col] in self.label_map.keys())
                    self.dataset = self.dataset.cast_column(self.label_col, datasets.ClassLabel(
                        num_classes=len(self.label_map), names=list(self.label_map.keys())))

        self.dataset = self.dataset.filter(lambda example: not any(x in [None, ""] for x in [
                                           example[key] for key in self._text_features + self.scalar_features + ([self.label_col] if self.label_col else [])]))  # dropna

        if self.balance_label_counts and self.label_col and not self.streaming_dataset:
            label_datasets = {}
            for label in list(self.label_map.values()):
                label_dataset = self.dataset.filter(
                    lambda example: example[self.label_col] == label)
                label_datasets[len(label_dataset)] = label_dataset
            min_label_count = min(label_datasets)
            sampled_datasets = [dataset.train_test_split(train_size=min_label_count, shuffle=True, seed=self.seed)[
                'train'] if len(dataset) != min_label_count else dataset for dataset in label_datasets.values()]
            self.dataset = datasets.concatenate_datasets(sampled_datasets)

        if self.clean_text:
            self.dataset = self.dataset.map(self._clean_text, batched=not self.streaming_dataset,
                                            batch_size=self.processing_batch_size)
        self.dataset = self.dataset.map(self._truncate_and_strip_text, batched=not self.streaming_dataset,
                                        batch_size=self.processing_batch_size)

    def _streaming_rename_labels(self, example):
        # rename labels according to label_map if not already correct labels
        if isinstance(example[self.label_col], list):
            example[self.label_col] = [self.label_map.get(
                ex, None) for ex in example[self.label_col] if ex not in self.label_map.values()]
        elif isinstance(example[self.label_col], str) and example[self.label_col] not in self.label_map.values():
            example[self.label_col] = self.label_map.get(
                example[self.label_col], None)
        else:
            raise ValueError(
                f'Type of example label is {type(example[self.label_col])} when list or string is allowed')
        return example

    def _clean_text(self, example):
        for feat in self._text_features:
            example[feat] = clean_text_funcs(example[feat])[0] if isinstance(
                example[feat], str) else clean_text_funcs(example[feat])
        return example

    def _truncate_and_strip_text(self, example):
        # tokenizer will truncate to max_length tokens anyway so to save RAM let's truncate to max_length words already beforehand
        # one word is usually one or more tokens so should be safe to truncate this way without losing information
        for feat in self._text_features:
            if isinstance(example[feat], list):
                example[feat] = [
                    ' '.join(text.split()[:self.max_length]).strip() for text in example[feat] if text]
            elif isinstance(example[feat], str):
                example[feat] = ' '.join(example[feat].split()[
                                         :self.max_length]).strip()
            elif example[feat] is None:
                return None
            else:
                raise ValueError(
                    f'Type of example is {type(example[feat])} when list or string is allowed')
        return example

    def _encode(self, dataset):
        encoded_dataset = None
        for text_type in self.text_types:
            encoded_text_type = dataset.map(lambda regret, recommendation: self.tokenizer(regret, recommendation, padding="max_length", truncation=True, max_length=self.max_length), batched=True,
                                            batch_size=self.processing_batch_size, num_proc=self.processing_num_proc, input_columns=[f'regret_{text_type}', f'recommendation_{text_type}'], remove_columns=dataset.column_names)
            encoded_text_type = encoded_text_type.rename_columns(
                {col: f'{text_type}_{col}' for col in encoded_text_type.column_names})  # e.g. input_ids -> title_input_ids so we have separate input_ids for each text_type
            if encoded_dataset:
                encoded_dataset = datasets.concatenate_datasets(
                    [encoded_dataset, encoded_text_type], axis=1)
            else:
                encoded_dataset = encoded_text_type

        # copy scalar features and label from original dataset to the encoded dataset
        for scalar_feat in self.scalar_features:
            encoded_dataset = encoded_dataset.add_column(
                name=scalar_feat, column=dataset[scalar_feat])
        if self.label_col:
            encoded_dataset = encoded_dataset.add_column(
                name=self.label_col, column=dataset[self.label_col])
        if self.keep_video_ids_for_predictions:
            for id in ['regret_id', "recommendation_id"]:
                encoded_dataset = encoded_dataset.add_column(
                    name=id, column=dataset[id])

        encoded_dataset.set_format(
            type='torch', columns=encoded_dataset.column_names)
        return encoded_dataset

    def _encode_streaming(self, dataset):
        encoded_dataset = dataset.map(self._encode_on_the_fly, batched=True,
                                      batch_size=self.processing_batch_size, remove_columns=list(set(self._stream_dataset_column_names)-set(self.scalar_features + (
                                          [self.label_col] if self.label_col else []) + (['regret_id', "recommendation_id"] if self.keep_video_ids_for_predictions else []))))  # IterableDataset doesn't have column_names attribute as normal Dataset
        encoded_dataset = encoded_dataset.with_format("torch")
        return encoded_dataset

    def _encode_on_the_fly(self, batch):
        for text_type in self.text_types:
            encoded_text_type = dict(self.tokenizer(
                batch[f'regret_{text_type}'], batch[f'recommendation_{text_type}'], padding="max_length", truncation=True, max_length=self.max_length, return_tensors="pt"))
            for encoded_key in encoded_text_type.copy():
                encoded_text_type[f"{text_type}_{encoded_key}"] = encoded_text_type.pop(encoded_key) if not self.streaming_dataset else encoded_text_type.pop(
                    encoded_key).squeeze(0)  # e.g. input_ids -> title_input_ids so we have separate input_ids for each text_type
            del batch[f'regret_{text_type}']
            del batch[f'recommendation_{text_type}']
            batch.update(encoded_text_type)
        for scalar_feat in self.scalar_features:
            batch[scalar_feat] = torch.as_tensor(
                batch[scalar_feat]) if not self.streaming_dataset else torch.as_tensor(batch[scalar_feat]).squeeze(0)
        if self.label_col:
            batch[self.label_col] = torch.as_tensor(
                batch[self.label_col]) if not self.streaming_dataset else torch.as_tensor(batch[self.label_col]).squeeze(0)
        return batch


class RRUM(pl.LightningModule):
    def __init__(self, text_types, scalar_features, label_col, cross_encoder_model_name_or_path, optimizer_config=None, freeze_policy=None, pos_weight=None):
        super().__init__()
        self.save_hyperparameters()
        self.text_types = text_types
        self.scalar_features = scalar_features
        self.label_col = label_col
        self.optimizer_config = optimizer_config
        self.cross_encoder_model_name_or_path = cross_encoder_model_name_or_path
        self.cross_encoders = nn.ModuleDict({})
        for t in self.text_types:
            self.cross_encoders[t] = AutoModelForSequenceClassification.from_pretrained(
                self.cross_encoder_model_name_or_path)
        if freeze_policy is not None:
            for xe in self.cross_encoders.values():
                for name, param in xe.named_parameters():
                    if freeze_policy(name):
                        param.requires_grad = False
        cross_encoder_out_features = list(self.cross_encoders.values())[0](
            torch.randint(1, 2, (1, 2))).logits.size(dim=1)
        self.lin1 = nn.Linear(len(self.cross_encoders) * cross_encoder_out_features +
                              len(self.scalar_features), 1)
        self.ac_metric = torchmetrics.Accuracy()
        self.pr_metric = torchmetrics.Precision()
        self.re_metric = torchmetrics.Recall()
        self.auc_metric = torchmetrics.AUROC()

        if pos_weight:
            self.loss = nn.BCEWithLogitsLoss(
                pos_weight=torch.Tensor([pos_weight]))
        else:
            self.loss = nn.BCEWithLogitsLoss()

    def forward(self, x):
        cross_logits = {}
        for f in self.text_types:
            inputs = {key.split(f'{f}_')[1]: x[key]
                      for key in x if f in key}  # e.g. title_input_ids -> input_ids since we have separate input_ids for each text_type
            cross_logits[f] = self.cross_encoders[f](**inputs).logits
        x = torch.cat([*cross_logits.values()] +
                      [x[scalar][:, None] for scalar in self.scalar_features],
                      1
                      )
        del cross_logits

        x = self.lin1(x)
        return x

    def configure_optimizers(self):
        if self.optimizer_config:
            return self.optimizer_config(self)

        optimizer = torch.optim.AdamW(self.parameters(), lr=5e-5)
        scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=int(
                self.trainer.estimated_stepping_batches * 0.05),
            num_training_steps=self.trainer.estimated_stepping_batches,
        )
        scheduler = {'scheduler': scheduler,
                     'interval': 'step', 'frequency': 1}
        return [optimizer], [scheduler]

    def training_step(self, train_batch, batch_idx):
        y = train_batch[self.label_col].unsqueeze(1).float()
        logits = self(train_batch)
        loss = self.loss(logits, y)
        self.log('train_loss', loss)
        return loss

    def validation_step(self, val_batch, batch_idx):
        y = val_batch[self.label_col].unsqueeze(1).float()
        logits = self(val_batch)
        loss = self.loss(logits, y)
        self.ac_metric(logits, y.int())
        self.pr_metric(logits, y.int())
        self.re_metric(logits, y.int())
        self.auc_metric(logits, y.int())
        self.log('validation_accuracy', self.ac_metric)
        self.log('validation_precision', self.pr_metric)
        self.log('validation_recall', self.re_metric)
        self.log('validation_auc', self.auc_metric)
        self.log('val_loss', loss, prog_bar=True)

    def validation_epoch_end(self, outputs):
        self.log('validation_accuracy_ep', self.ac_metric)
        self.log('validation_precision_ep', self.pr_metric)
        self.log('validation_recall_ep', self.re_metric)
        self.log('validation_auc_ep', self.auc_metric)