File size: 2,549 Bytes
a5c0eb9
 
 
 
 
 
 
 
 
 
0e686e2
a5c0eb9
 
 
 
 
 
0e686e2
a5c0eb9
7cf96a8
a5c0eb9
4c5b0cd
 
cc4eda0
4c5b0cd
 
a5c0eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4eda0
0e686e2
 
a5c0eb9
 
 
4c5b0cd
a5c0eb9
 
 
7cf96a8
 
4c5b0cd
 
 
 
 
 
 
 
 
 
 
 
a5c0eb9
 
 
 
7cf96a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-funsd

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5469
- Precision: 0.8633
- Recall: 0.903
- F1: 0.8827
- Accuracy: 0.8435

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 300

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.67  | 25   | 1.2106          | 0.4708    | 0.5275 | 0.4975 | 0.6554   |
| No log        | 3.33  | 50   | 0.7854          | 0.7498    | 0.8075 | 0.7776 | 0.7687   |
| No log        | 5.0   | 75   | 0.6002          | 0.7932    | 0.8455 | 0.8185 | 0.8142   |
| No log        | 6.67  | 100  | 0.6523          | 0.7849    | 0.876  | 0.8280 | 0.7781   |
| No log        | 8.33  | 125  | 0.5190          | 0.8152    | 0.8755 | 0.8443 | 0.8354   |
| No log        | 10.0  | 150  | 0.5064          | 0.8315    | 0.888  | 0.8588 | 0.8338   |
| No log        | 11.67 | 175  | 0.5342          | 0.8482    | 0.8915 | 0.8693 | 0.8344   |
| No log        | 13.33 | 200  | 0.5538          | 0.8492    | 0.8925 | 0.8703 | 0.8201   |
| No log        | 15.0  | 225  | 0.5336          | 0.8557    | 0.901  | 0.8777 | 0.8349   |
| No log        | 16.67 | 250  | 0.5465          | 0.8564    | 0.8975 | 0.8765 | 0.8385   |
| No log        | 18.33 | 275  | 0.5403          | 0.8580    | 0.9005 | 0.8788 | 0.8439   |
| No log        | 20.0  | 300  | 0.5469          | 0.8633    | 0.903  | 0.8827 | 0.8435   |


### Framework versions

- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 2.13.2
- Tokenizers 0.10.1