mp-02 commited on
Commit
c66dd5b
1 Parent(s): e21dc2c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -20
README.md CHANGED
@@ -20,16 +20,16 @@ model-index:
20
  metrics:
21
  - name: Precision
22
  type: precision
23
- value: 0.9059871350816427
24
  - name: Recall
25
  type: recall
26
- value: 0.9155
27
  - name: F1
28
  type: f1
29
- value: 0.9107187266849044
30
  - name: Accuracy
31
  type: accuracy
32
- value: 0.8407211759301791
33
  ---
34
 
35
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -39,11 +39,11 @@ should probably proofread and complete it, then remove this comment. -->
39
 
40
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
41
  It achieves the following results on the evaluation set:
42
- - Loss: 0.8860
43
- - Precision: 0.9060
44
- - Recall: 0.9155
45
- - F1: 0.9107
46
- - Accuracy: 0.8407
47
 
48
  ## Model description
49
 
@@ -68,22 +68,22 @@ The following hyperparameters were used during training:
68
  - seed: 42
69
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
70
  - lr_scheduler_type: linear
71
- - training_steps: 1000
72
 
73
  ### Training results
74
 
75
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
76
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
77
- | No log | 2.63 | 100 | 0.6111 | 0.7963 | 0.864 | 0.8288 | 0.7987 |
78
- | No log | 5.26 | 200 | 0.5861 | 0.8507 | 0.883 | 0.8665 | 0.8266 |
79
- | No log | 7.89 | 300 | 0.5856 | 0.8654 | 0.9005 | 0.8826 | 0.8426 |
80
- | No log | 10.53 | 400 | 0.6502 | 0.8801 | 0.8995 | 0.8897 | 0.8427 |
81
- | 0.4088 | 13.16 | 500 | 0.7679 | 0.8880 | 0.904 | 0.8959 | 0.8373 |
82
- | 0.4088 | 15.79 | 600 | 0.8371 | 0.8820 | 0.904 | 0.8928 | 0.8333 |
83
- | 0.4088 | 18.42 | 700 | 0.8320 | 0.8931 | 0.9145 | 0.9037 | 0.8336 |
84
- | 0.4088 | 21.05 | 800 | 0.8494 | 0.8969 | 0.9135 | 0.9051 | 0.8341 |
85
- | 0.4088 | 23.68 | 900 | 0.8700 | 0.9005 | 0.914 | 0.9072 | 0.8385 |
86
- | 0.061 | 26.32 | 1000 | 0.8860 | 0.9060 | 0.9155 | 0.9107 | 0.8407 |
87
 
88
 
89
  ### Framework versions
 
20
  metrics:
21
  - name: Precision
22
  type: precision
23
+ value: 0.875725338491296
24
  - name: Recall
25
  type: recall
26
+ value: 0.9055
27
  - name: F1
28
  type: f1
29
+ value: 0.8903638151425762
30
  - name: Accuracy
31
  type: accuracy
32
+ value: 0.843706936150666
33
  ---
34
 
35
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
39
 
40
  This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
41
  It achieves the following results on the evaluation set:
42
+ - Loss: 0.6187
43
+ - Precision: 0.8757
44
+ - Recall: 0.9055
45
+ - F1: 0.8904
46
+ - Accuracy: 0.8437
47
 
48
  ## Model description
49
 
 
68
  - seed: 42
69
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
70
  - lr_scheduler_type: linear
71
+ - training_steps: 500
72
 
73
  ### Training results
74
 
75
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
76
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
77
+ | No log | 1.32 | 50 | 0.9063 | 0.7006 | 0.757 | 0.7277 | 0.7607 |
78
+ | No log | 2.63 | 100 | 0.6387 | 0.7930 | 0.858 | 0.8242 | 0.7967 |
79
+ | No log | 3.95 | 150 | 0.5691 | 0.8171 | 0.8825 | 0.8486 | 0.8254 |
80
+ | No log | 5.26 | 200 | 0.5723 | 0.8315 | 0.881 | 0.8555 | 0.8223 |
81
+ | No log | 6.58 | 250 | 0.5897 | 0.8475 | 0.9 | 0.8729 | 0.8292 |
82
+ | No log | 7.89 | 300 | 0.6122 | 0.8482 | 0.9025 | 0.8745 | 0.8283 |
83
+ | No log | 9.21 | 350 | 0.6045 | 0.8505 | 0.899 | 0.8741 | 0.8392 |
84
+ | No log | 10.53 | 400 | 0.5662 | 0.8708 | 0.9 | 0.8852 | 0.8446 |
85
+ | No log | 11.84 | 450 | 0.5973 | 0.8739 | 0.9045 | 0.8889 | 0.8437 |
86
+ | 0.4305 | 13.16 | 500 | 0.6187 | 0.8757 | 0.9055 | 0.8904 | 0.8437 |
87
 
88
 
89
  ### Framework versions