update model card README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
metrics:
|
6 |
- precision
|
7 |
- recall
|
@@ -9,7 +10,26 @@ metrics:
|
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: layoutlmv3-finetuned-funsd
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,13 +37,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# layoutlmv3-finetuned-funsd
|
19 |
|
20 |
-
This model is a fine-tuned version of [
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,29 +63,33 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 1e-05
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- training_steps:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| No log |
|
58 |
-
| No log |
|
59 |
-
| No log |
|
60 |
-
| No log |
|
61 |
-
| No log |
|
62 |
-
| No log |
|
63 |
-
| No log |
|
64 |
-
| No log |
|
65 |
-
| No log |
|
66 |
-
| No log |
|
67 |
-
| No log |
|
68 |
-
| No log |
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- mp-02/funsd
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
|
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
- name: layoutlmv3-finetuned-funsd
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: mp-02/funsd
|
19 |
+
type: mp-02/funsd
|
20 |
+
metrics:
|
21 |
+
- name: Precision
|
22 |
+
type: precision
|
23 |
+
value: 0.8553875236294896
|
24 |
+
- name: Recall
|
25 |
+
type: recall
|
26 |
+
value: 0.905
|
27 |
+
- name: F1
|
28 |
+
type: f1
|
29 |
+
value: 0.8794946550048591
|
30 |
+
- name: Accuracy
|
31 |
+
type: accuracy
|
32 |
+
value: 0.833371612310519
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
37 |
|
38 |
# layoutlmv3-finetuned-funsd
|
39 |
|
40 |
+
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
|
41 |
It achieves the following results on the evaluation set:
|
42 |
+
- Loss: 0.5784
|
43 |
+
- Precision: 0.8554
|
44 |
+
- Recall: 0.905
|
45 |
+
- F1: 0.8795
|
46 |
+
- Accuracy: 0.8334
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
63 |
|
64 |
The following hyperparameters were used during training:
|
65 |
- learning_rate: 1e-05
|
66 |
+
- train_batch_size: 4
|
67 |
+
- eval_batch_size: 16
|
68 |
- seed: 42
|
69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
70 |
- lr_scheduler_type: linear
|
71 |
+
- training_steps: 400
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
76 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
77 |
+
| No log | 0.66 | 25 | 1.3511 | 0.3301 | 0.3585 | 0.3437 | 0.5721 |
|
78 |
+
| No log | 1.32 | 50 | 0.9059 | 0.6965 | 0.7515 | 0.7229 | 0.7615 |
|
79 |
+
| No log | 1.97 | 75 | 0.7164 | 0.7613 | 0.831 | 0.7946 | 0.7796 |
|
80 |
+
| No log | 2.63 | 100 | 0.6393 | 0.7947 | 0.8575 | 0.8249 | 0.7993 |
|
81 |
+
| No log | 3.29 | 125 | 0.5756 | 0.8138 | 0.87 | 0.8410 | 0.8104 |
|
82 |
+
| No log | 3.95 | 150 | 0.5508 | 0.8197 | 0.884 | 0.8506 | 0.8323 |
|
83 |
+
| No log | 4.61 | 175 | 0.5458 | 0.8325 | 0.8895 | 0.8600 | 0.8328 |
|
84 |
+
| No log | 5.26 | 200 | 0.5740 | 0.8234 | 0.8765 | 0.8491 | 0.8266 |
|
85 |
+
| No log | 5.92 | 225 | 0.5719 | 0.8532 | 0.8895 | 0.8710 | 0.8361 |
|
86 |
+
| No log | 6.58 | 250 | 0.5436 | 0.8439 | 0.9055 | 0.8736 | 0.8264 |
|
87 |
+
| No log | 7.24 | 275 | 0.5714 | 0.8520 | 0.9065 | 0.8784 | 0.8290 |
|
88 |
+
| No log | 7.89 | 300 | 0.5853 | 0.8560 | 0.9035 | 0.8791 | 0.8281 |
|
89 |
+
| No log | 8.55 | 325 | 0.5702 | 0.8578 | 0.905 | 0.8808 | 0.8390 |
|
90 |
+
| No log | 9.21 | 350 | 0.5667 | 0.8552 | 0.901 | 0.8775 | 0.8419 |
|
91 |
+
| No log | 9.87 | 375 | 0.5793 | 0.8552 | 0.9035 | 0.8787 | 0.8338 |
|
92 |
+
| No log | 10.53 | 400 | 0.5784 | 0.8554 | 0.905 | 0.8795 | 0.8334 |
|
93 |
|
94 |
|
95 |
### Framework versions
|