--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd2 results: [] --- # layoutlmv3-finetuned-funsd2 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6633 - Precision: 0.9027 - Recall: 0.9090 - F1: 0.9058 - Accuracy: 0.8500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9091 | 10 | 0.9825 | 0.5685 | 0.6133 | 0.5901 | 0.6804 | | No log | 1.8182 | 20 | 0.6492 | 0.7647 | 0.8215 | 0.7921 | 0.7781 | | No log | 2.7273 | 30 | 0.5079 | 0.8037 | 0.8635 | 0.8326 | 0.8370 | | No log | 3.6364 | 40 | 0.5371 | 0.8600 | 0.8924 | 0.8759 | 0.8428 | | No log | 4.5455 | 50 | 0.5696 | 0.8753 | 0.8968 | 0.8859 | 0.8348 | | No log | 5.4545 | 60 | 0.6309 | 0.8733 | 0.8863 | 0.8797 | 0.8272 | | No log | 6.3636 | 70 | 0.6272 | 0.8878 | 0.9003 | 0.8940 | 0.8494 | | No log | 7.2727 | 80 | 0.6168 | 0.9025 | 0.9151 | 0.9088 | 0.8688 | | No log | 8.1818 | 90 | 0.6458 | 0.9094 | 0.9134 | 0.9114 | 0.8588 | | No log | 9.0909 | 100 | 0.6830 | 0.8985 | 0.9064 | 0.9024 | 0.8490 | | No log | 10.0 | 110 | 0.6325 | 0.9086 | 0.9221 | 0.9153 | 0.8502 | | No log | 10.9091 | 120 | 0.6633 | 0.9027 | 0.9090 | 0.9058 | 0.8500 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1