--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd results: [] --- # layoutlmv3-finetuned-funsd This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8292 - Precision: 0.8993 - Recall: 0.915 - F1: 0.9071 - Accuracy: 0.8473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.67 | 25 | 0.8680 | 0.7229 | 0.7345 | 0.7287 | 0.7439 | | No log | 3.33 | 50 | 0.5806 | 0.7987 | 0.859 | 0.8278 | 0.8218 | | No log | 5.0 | 75 | 0.5964 | 0.8169 | 0.89 | 0.8519 | 0.8143 | | No log | 6.67 | 100 | 0.5635 | 0.8563 | 0.9085 | 0.8816 | 0.8249 | | No log | 8.33 | 125 | 0.6466 | 0.8571 | 0.9055 | 0.8806 | 0.8344 | | No log | 10.0 | 150 | 0.6587 | 0.8806 | 0.907 | 0.8936 | 0.8326 | | No log | 11.67 | 175 | 0.6984 | 0.8826 | 0.9135 | 0.8978 | 0.8376 | | No log | 13.33 | 200 | 0.6967 | 0.9003 | 0.926 | 0.9130 | 0.8437 | | No log | 15.0 | 225 | 0.7260 | 0.8979 | 0.9105 | 0.9042 | 0.8451 | | No log | 16.67 | 250 | 0.7543 | 0.8881 | 0.913 | 0.9004 | 0.8511 | | No log | 18.33 | 275 | 0.7765 | 0.8862 | 0.911 | 0.8984 | 0.8449 | | No log | 20.0 | 300 | 0.8024 | 0.9007 | 0.907 | 0.9038 | 0.8474 | | No log | 21.67 | 325 | 0.8147 | 0.9038 | 0.916 | 0.9099 | 0.8509 | | No log | 23.33 | 350 | 0.8134 | 0.9042 | 0.9155 | 0.9098 | 0.8511 | | No log | 25.0 | 375 | 0.8294 | 0.9027 | 0.914 | 0.9083 | 0.8467 | | No log | 26.67 | 400 | 0.8292 | 0.8993 | 0.915 | 0.9071 | 0.8473 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 2.13.2 - Tokenizers 0.10.1