--- tags: - generated_from_trainer datasets: - mp-02/funsd metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: mp-02/funsd type: mp-02/funsd metrics: - name: Precision type: precision value: 0.875725338491296 - name: Recall type: recall value: 0.9055 - name: F1 type: f1 value: 0.8903638151425762 - name: Accuracy type: accuracy value: 0.843706936150666 --- # layoutlmv3-finetuned-funsd This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.6187 - Precision: 0.8757 - Recall: 0.9055 - F1: 0.8904 - Accuracy: 0.8437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.32 | 50 | 0.9063 | 0.7006 | 0.757 | 0.7277 | 0.7607 | | No log | 2.63 | 100 | 0.6387 | 0.7930 | 0.858 | 0.8242 | 0.7967 | | No log | 3.95 | 150 | 0.5691 | 0.8171 | 0.8825 | 0.8486 | 0.8254 | | No log | 5.26 | 200 | 0.5723 | 0.8315 | 0.881 | 0.8555 | 0.8223 | | No log | 6.58 | 250 | 0.5897 | 0.8475 | 0.9 | 0.8729 | 0.8292 | | No log | 7.89 | 300 | 0.6122 | 0.8482 | 0.9025 | 0.8745 | 0.8283 | | No log | 9.21 | 350 | 0.6045 | 0.8505 | 0.899 | 0.8741 | 0.8392 | | No log | 10.53 | 400 | 0.5662 | 0.8708 | 0.9 | 0.8852 | 0.8446 | | No log | 11.84 | 450 | 0.5973 | 0.8739 | 0.9045 | 0.8889 | 0.8437 | | 0.4305 | 13.16 | 500 | 0.6187 | 0.8757 | 0.9055 | 0.8904 | 0.8437 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 2.13.2 - Tokenizers 0.10.1