File size: 2,466 Bytes
3555887
e3819f5
3555887
 
 
 
7151a92
3555887
 
 
 
 
 
 
 
 
 
 
 
7151a92
 
3555887
 
 
3940f35
3555887
 
3940f35
3555887
 
3940f35
3555887
 
3940f35
3555887
 
 
 
 
 
 
7151a92
3555887
3940f35
 
 
 
 
3555887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3940f35
7151a92
 
3555887
 
 
7151a92
3555887
 
 
 
 
3940f35
 
 
 
 
 
3555887
 
 
 
e3819f5
3555887
e3819f5
3555887
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/sroie
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-sroie
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: mp-02/sroie
      type: mp-02/sroie
    metrics:
    - name: Precision
      type: precision
      value: 0.9232981783317353
    - name: Recall
      type: recall
      value: 0.9578912466843501
    - name: F1
      type: f1
      value: 0.9402766476810415
    - name: Accuracy
      type: accuracy
      value: 0.981485280541594
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-sroie

This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/sroie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0651
- Precision: 0.9233
- Recall: 0.9579
- F1: 0.9403
- Accuracy: 0.9815

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 2.3810  | 250  | 0.0957          | 0.9075    | 0.9304 | 0.9188 | 0.9752   |
| 0.1943        | 4.7619  | 500  | 0.0699          | 0.9260    | 0.9456 | 0.9357 | 0.9805   |
| 0.1943        | 7.1429  | 750  | 0.0657          | 0.9291    | 0.9513 | 0.9400 | 0.9817   |
| 0.0485        | 9.5238  | 1000 | 0.0651          | 0.9233    | 0.9579 | 0.9403 | 0.9815   |
| 0.0485        | 11.9048 | 1250 | 0.0661          | 0.9155    | 0.9625 | 0.9384 | 0.9808   |
| 0.0397        | 14.2857 | 1500 | 0.0660          | 0.9161    | 0.9632 | 0.9391 | 0.9810   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1