--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/sroie metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-sroie results: - task: name: Token Classification type: token-classification dataset: name: mp-02/sroie type: mp-02/sroie metrics: - name: Precision type: precision value: 0.9232981783317353 - name: Recall type: recall value: 0.9578912466843501 - name: F1 type: f1 value: 0.9402766476810415 - name: Accuracy type: accuracy value: 0.981485280541594 --- # layoutlmv3-finetuned-sroie This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0651 - Precision: 0.9233 - Recall: 0.9579 - F1: 0.9403 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.3810 | 250 | 0.0957 | 0.9075 | 0.9304 | 0.9188 | 0.9752 | | 0.1943 | 4.7619 | 500 | 0.0699 | 0.9260 | 0.9456 | 0.9357 | 0.9805 | | 0.1943 | 7.1429 | 750 | 0.0657 | 0.9291 | 0.9513 | 0.9400 | 0.9817 | | 0.0485 | 9.5238 | 1000 | 0.0651 | 0.9233 | 0.9579 | 0.9403 | 0.9815 | | 0.0485 | 11.9048 | 1250 | 0.0661 | 0.9155 | 0.9625 | 0.9384 | 0.9808 | | 0.0397 | 14.2857 | 1500 | 0.0660 | 0.9161 | 0.9632 | 0.9391 | 0.9810 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1