--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/sroie metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-sroie results: - task: name: Token Classification type: token-classification dataset: name: mp-02/sroie type: mp-02/sroie metrics: - name: Precision type: precision value: 0.9265995453069178 - name: Recall type: recall value: 0.9459549071618037 - name: F1 type: f1 value: 0.936177194421657 - name: Accuracy type: accuracy value: 0.9808185454918453 --- # layoutlmv3-finetuned-sroie This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0717 - Precision: 0.9266 - Recall: 0.9460 - F1: 0.9362 - Accuracy: 0.9808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.3810 | 250 | 0.1477 | 0.8827 | 0.8654 | 0.8739 | 0.9628 | | 0.3014 | 4.7619 | 500 | 0.0899 | 0.9138 | 0.9274 | 0.9205 | 0.9759 | | 0.3014 | 7.1429 | 750 | 0.0765 | 0.9257 | 0.9377 | 0.9316 | 0.9795 | | 0.0669 | 9.5238 | 1000 | 0.0717 | 0.9266 | 0.9460 | 0.9362 | 0.9808 | | 0.0669 | 11.9048 | 1250 | 0.0713 | 0.9216 | 0.9476 | 0.9344 | 0.9803 | | 0.0562 | 14.2857 | 1500 | 0.0712 | 0.9203 | 0.9493 | 0.9346 | 0.9803 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1