antonioanerao commited on
Commit
a377102
·
verified ·
1 Parent(s): 2e9f739

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:34
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-large-en-v1.5
14
+ widget:
15
+ - source_sentence: Quais são as iniciativas do Seringal Lab?
16
+ sentences:
17
+ - O objetivo do Seringal Lab é atuar como um catalisador da transformação interna
18
+ do Ministério Público do Acre, promovendo melhorias contínuas que otimizam o funcionamento
19
+ da instituição e geram um impacto positivo direto para a sociedade.
20
+ - O NAT é vinculado à Procuradoria-Geral de Justiça e presta apoio técnico especializado
21
+ ao MPAC.
22
+ - Algumas das iniciativas do Seringal Lab incluem a Anton.IA, o TranscreveAI e o
23
+ Simplifica.
24
+ - source_sentence: Em que ano o NAT foi instituído?
25
+ sentences:
26
+ - O SIMBA é o Sistema de Investigação de Movimentação Bancária, gerenciado pelo
27
+ NAT, para monitoramento de atividades financeiras suspeitas no Acre.
28
+ - O NAT foi criado em 2012 pelo Ato n.º 25, visando oferecer apoio técnico-científico
29
+ e de segurança institucional ao MPAC.
30
+ - O NAT foi instituído no ano de 2012 como uma unidade de suporte técnico e segurança
31
+ ao MPAC.
32
+ - source_sentence: Qual o impacto do NAT no combate ao crime organizado?
33
+ sentences:
34
+ - NAT é o Núcleo de Apoio Técnico do Ministério Público do Estado do Acre, criado
35
+ para fornecer suporte especializado em inteligência, segurança institucional e
36
+ operações técnico-científicas.
37
+ - O NAT fortalece o combate ao crime organizado ao fornecer suporte técnico e científico
38
+ ao GAECO e outros órgãos do MPAC.
39
+ - O NAT foi criado para oferecer suporte especializado ao MPAC, garantindo apoio
40
+ em áreas técnico-científicas e de segurança para facilitar as operações de investigação
41
+ e combate ao crime.
42
+ - source_sentence: Quem regulamenta o NAT?
43
+ sentences:
44
+ - O escopo do NAT envolve oferecer apoio de inteligência, segurança institucional,
45
+ e suporte técnico-científico ao MPAC, especialmente nas operações do GAECO.
46
+ - NAT significa Núcleo de Apoio Técnico, uma unidade de suporte técnico e de segurança
47
+ ao Ministério Público do Acre.
48
+ - O NAT é regulamentado pelo Ministério Público do Estado do Acre e foi formalizado
49
+ pela Lei Complementar n.º 291 de 2014.
50
+ - source_sentence: Qual a importância do NAT para o MPAC?
51
+ sentences:
52
+ - O TranscreveAI transforma áudios em textos de maneira automática e precisa, além
53
+ de registrar o tempo exato do início e do fim de cada fala (timestamp).
54
+ - O NAT é essencial para o MPAC, fornecendo apoio técnico especializado e segurança,
55
+ fortalecendo as operações de investigação e combate ao crime.
56
+ - A Lei Complementar n.º 291 de 2014 regulamentou o NAT como um órgão auxiliar do
57
+ MPAC, fortalecendo seu papel de apoio técnico e científico.
58
+ pipeline_tag: sentence-similarity
59
+ library_name: sentence-transformers
60
+ metrics:
61
+ - cosine_accuracy@1
62
+ - cosine_accuracy@3
63
+ - cosine_accuracy@5
64
+ - cosine_accuracy@10
65
+ - cosine_precision@1
66
+ - cosine_precision@3
67
+ - cosine_precision@5
68
+ - cosine_precision@10
69
+ - cosine_recall@1
70
+ - cosine_recall@3
71
+ - cosine_recall@5
72
+ - cosine_recall@10
73
+ - cosine_ndcg@10
74
+ - cosine_mrr@10
75
+ - cosine_map@100
76
+ model-index:
77
+ - name: MPAC BGE Large
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: dim 768
84
+ type: dim_768
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.7777777777777778
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@3
90
+ value: 0.8888888888888888
91
+ name: Cosine Accuracy@3
92
+ - type: cosine_accuracy@5
93
+ value: 0.8888888888888888
94
+ name: Cosine Accuracy@5
95
+ - type: cosine_accuracy@10
96
+ value: 0.8888888888888888
97
+ name: Cosine Accuracy@10
98
+ - type: cosine_precision@1
99
+ value: 0.7777777777777778
100
+ name: Cosine Precision@1
101
+ - type: cosine_precision@3
102
+ value: 0.2962962962962963
103
+ name: Cosine Precision@3
104
+ - type: cosine_precision@5
105
+ value: 0.17777777777777778
106
+ name: Cosine Precision@5
107
+ - type: cosine_precision@10
108
+ value: 0.08888888888888889
109
+ name: Cosine Precision@10
110
+ - type: cosine_recall@1
111
+ value: 0.7777777777777778
112
+ name: Cosine Recall@1
113
+ - type: cosine_recall@3
114
+ value: 0.8888888888888888
115
+ name: Cosine Recall@3
116
+ - type: cosine_recall@5
117
+ value: 0.8888888888888888
118
+ name: Cosine Recall@5
119
+ - type: cosine_recall@10
120
+ value: 0.8888888888888888
121
+ name: Cosine Recall@10
122
+ - type: cosine_ndcg@10
123
+ value: 0.8333333333333334
124
+ name: Cosine Ndcg@10
125
+ - type: cosine_mrr@10
126
+ value: 0.8148148148148149
127
+ name: Cosine Mrr@10
128
+ - type: cosine_map@100
129
+ value: 0.8249158249158248
130
+ name: Cosine Map@100
131
+ - task:
132
+ type: information-retrieval
133
+ name: Information Retrieval
134
+ dataset:
135
+ name: dim 512
136
+ type: dim_512
137
+ metrics:
138
+ - type: cosine_accuracy@1
139
+ value: 0.7777777777777778
140
+ name: Cosine Accuracy@1
141
+ - type: cosine_accuracy@3
142
+ value: 0.8888888888888888
143
+ name: Cosine Accuracy@3
144
+ - type: cosine_accuracy@5
145
+ value: 0.8888888888888888
146
+ name: Cosine Accuracy@5
147
+ - type: cosine_accuracy@10
148
+ value: 1.0
149
+ name: Cosine Accuracy@10
150
+ - type: cosine_precision@1
151
+ value: 0.7777777777777778
152
+ name: Cosine Precision@1
153
+ - type: cosine_precision@3
154
+ value: 0.2962962962962963
155
+ name: Cosine Precision@3
156
+ - type: cosine_precision@5
157
+ value: 0.17777777777777778
158
+ name: Cosine Precision@5
159
+ - type: cosine_precision@10
160
+ value: 0.1
161
+ name: Cosine Precision@10
162
+ - type: cosine_recall@1
163
+ value: 0.7777777777777778
164
+ name: Cosine Recall@1
165
+ - type: cosine_recall@3
166
+ value: 0.8888888888888888
167
+ name: Cosine Recall@3
168
+ - type: cosine_recall@5
169
+ value: 0.8888888888888888
170
+ name: Cosine Recall@5
171
+ - type: cosine_recall@10
172
+ value: 1.0
173
+ name: Cosine Recall@10
174
+ - type: cosine_ndcg@10
175
+ value: 0.8813288610261599
176
+ name: Cosine Ndcg@10
177
+ - type: cosine_mrr@10
178
+ value: 0.845679012345679
179
+ name: Cosine Mrr@10
180
+ - type: cosine_map@100
181
+ value: 0.845679012345679
182
+ name: Cosine Map@100
183
+ - task:
184
+ type: information-retrieval
185
+ name: Information Retrieval
186
+ dataset:
187
+ name: dim 256
188
+ type: dim_256
189
+ metrics:
190
+ - type: cosine_accuracy@1
191
+ value: 0.7777777777777778
192
+ name: Cosine Accuracy@1
193
+ - type: cosine_accuracy@3
194
+ value: 0.8888888888888888
195
+ name: Cosine Accuracy@3
196
+ - type: cosine_accuracy@5
197
+ value: 0.8888888888888888
198
+ name: Cosine Accuracy@5
199
+ - type: cosine_accuracy@10
200
+ value: 1.0
201
+ name: Cosine Accuracy@10
202
+ - type: cosine_precision@1
203
+ value: 0.7777777777777778
204
+ name: Cosine Precision@1
205
+ - type: cosine_precision@3
206
+ value: 0.2962962962962963
207
+ name: Cosine Precision@3
208
+ - type: cosine_precision@5
209
+ value: 0.17777777777777778
210
+ name: Cosine Precision@5
211
+ - type: cosine_precision@10
212
+ value: 0.1
213
+ name: Cosine Precision@10
214
+ - type: cosine_recall@1
215
+ value: 0.7777777777777778
216
+ name: Cosine Recall@1
217
+ - type: cosine_recall@3
218
+ value: 0.8888888888888888
219
+ name: Cosine Recall@3
220
+ - type: cosine_recall@5
221
+ value: 0.8888888888888888
222
+ name: Cosine Recall@5
223
+ - type: cosine_recall@10
224
+ value: 1.0
225
+ name: Cosine Recall@10
226
+ - type: cosine_ndcg@10
227
+ value: 0.884918120767199
228
+ name: Cosine Ndcg@10
229
+ - type: cosine_mrr@10
230
+ value: 0.8492063492063493
231
+ name: Cosine Mrr@10
232
+ - type: cosine_map@100
233
+ value: 0.8492063492063492
234
+ name: Cosine Map@100
235
+ - task:
236
+ type: information-retrieval
237
+ name: Information Retrieval
238
+ dataset:
239
+ name: dim 128
240
+ type: dim_128
241
+ metrics:
242
+ - type: cosine_accuracy@1
243
+ value: 0.7777777777777778
244
+ name: Cosine Accuracy@1
245
+ - type: cosine_accuracy@3
246
+ value: 0.8888888888888888
247
+ name: Cosine Accuracy@3
248
+ - type: cosine_accuracy@5
249
+ value: 0.8888888888888888
250
+ name: Cosine Accuracy@5
251
+ - type: cosine_accuracy@10
252
+ value: 1.0
253
+ name: Cosine Accuracy@10
254
+ - type: cosine_precision@1
255
+ value: 0.7777777777777778
256
+ name: Cosine Precision@1
257
+ - type: cosine_precision@3
258
+ value: 0.2962962962962963
259
+ name: Cosine Precision@3
260
+ - type: cosine_precision@5
261
+ value: 0.17777777777777778
262
+ name: Cosine Precision@5
263
+ - type: cosine_precision@10
264
+ value: 0.1
265
+ name: Cosine Precision@10
266
+ - type: cosine_recall@1
267
+ value: 0.7777777777777778
268
+ name: Cosine Recall@1
269
+ - type: cosine_recall@3
270
+ value: 0.8888888888888888
271
+ name: Cosine Recall@3
272
+ - type: cosine_recall@5
273
+ value: 0.8888888888888888
274
+ name: Cosine Recall@5
275
+ - type: cosine_recall@10
276
+ value: 1.0
277
+ name: Cosine Recall@10
278
+ - type: cosine_ndcg@10
279
+ value: 0.8813288610261599
280
+ name: Cosine Ndcg@10
281
+ - type: cosine_mrr@10
282
+ value: 0.845679012345679
283
+ name: Cosine Mrr@10
284
+ - type: cosine_map@100
285
+ value: 0.845679012345679
286
+ name: Cosine Map@100
287
+ - task:
288
+ type: information-retrieval
289
+ name: Information Retrieval
290
+ dataset:
291
+ name: dim 64
292
+ type: dim_64
293
+ metrics:
294
+ - type: cosine_accuracy@1
295
+ value: 0.7777777777777778
296
+ name: Cosine Accuracy@1
297
+ - type: cosine_accuracy@3
298
+ value: 0.8888888888888888
299
+ name: Cosine Accuracy@3
300
+ - type: cosine_accuracy@5
301
+ value: 0.8888888888888888
302
+ name: Cosine Accuracy@5
303
+ - type: cosine_accuracy@10
304
+ value: 1.0
305
+ name: Cosine Accuracy@10
306
+ - type: cosine_precision@1
307
+ value: 0.7777777777777778
308
+ name: Cosine Precision@1
309
+ - type: cosine_precision@3
310
+ value: 0.2962962962962963
311
+ name: Cosine Precision@3
312
+ - type: cosine_precision@5
313
+ value: 0.17777777777777778
314
+ name: Cosine Precision@5
315
+ - type: cosine_precision@10
316
+ value: 0.1
317
+ name: Cosine Precision@10
318
+ - type: cosine_recall@1
319
+ value: 0.7777777777777778
320
+ name: Cosine Recall@1
321
+ - type: cosine_recall@3
322
+ value: 0.8888888888888888
323
+ name: Cosine Recall@3
324
+ - type: cosine_recall@5
325
+ value: 0.8888888888888888
326
+ name: Cosine Recall@5
327
+ - type: cosine_recall@10
328
+ value: 1.0
329
+ name: Cosine Recall@10
330
+ - type: cosine_ndcg@10
331
+ value: 0.884918120767199
332
+ name: Cosine Ndcg@10
333
+ - type: cosine_mrr@10
334
+ value: 0.8492063492063493
335
+ name: Cosine Mrr@10
336
+ - type: cosine_map@100
337
+ value: 0.8492063492063492
338
+ name: Cosine Map@100
339
+ ---
340
+
341
+ # MPAC BGE Large
342
+
343
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
344
+
345
+ ## Model Details
346
+
347
+ ### Model Description
348
+ - **Model Type:** Sentence Transformer
349
+ - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
350
+ - **Maximum Sequence Length:** 512 tokens
351
+ - **Output Dimensionality:** 1024 dimensions
352
+ - **Similarity Function:** Cosine Similarity
353
+ - **Training Dataset:**
354
+ - json
355
+ - **Language:** en
356
+ - **License:** apache-2.0
357
+
358
+ ### Model Sources
359
+
360
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
361
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
362
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
363
+
364
+ ### Full Model Architecture
365
+
366
+ ```
367
+ SentenceTransformer(
368
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
369
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
370
+ (2): Normalize()
371
+ )
372
+ ```
373
+
374
+ ## Usage
375
+
376
+ ### Direct Usage (Sentence Transformers)
377
+
378
+ First install the Sentence Transformers library:
379
+
380
+ ```bash
381
+ pip install -U sentence-transformers
382
+ ```
383
+
384
+ Then you can load this model and run inference.
385
+ ```python
386
+ from sentence_transformers import SentenceTransformer
387
+
388
+ # Download from the 🤗 Hub
389
+ model = SentenceTransformer("mp-ac/mpac-bge-large-v1.2")
390
+ # Run inference
391
+ sentences = [
392
+ 'Qual a importância do NAT para o MPAC?',
393
+ 'O NAT é essencial para o MPAC, fornecendo apoio técnico especializado e segurança, fortalecendo as operações de investigação e combate ao crime.',
394
+ 'A Lei Complementar n.º 291 de 2014 regulamentou o NAT como um órgão auxiliar do MPAC, fortalecendo seu papel de apoio técnico e científico.',
395
+ ]
396
+ embeddings = model.encode(sentences)
397
+ print(embeddings.shape)
398
+ # [3, 1024]
399
+
400
+ # Get the similarity scores for the embeddings
401
+ similarities = model.similarity(embeddings, embeddings)
402
+ print(similarities.shape)
403
+ # [3, 3]
404
+ ```
405
+
406
+ <!--
407
+ ### Direct Usage (Transformers)
408
+
409
+ <details><summary>Click to see the direct usage in Transformers</summary>
410
+
411
+ </details>
412
+ -->
413
+
414
+ <!--
415
+ ### Downstream Usage (Sentence Transformers)
416
+
417
+ You can finetune this model on your own dataset.
418
+
419
+ <details><summary>Click to expand</summary>
420
+
421
+ </details>
422
+ -->
423
+
424
+ <!--
425
+ ### Out-of-Scope Use
426
+
427
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
428
+ -->
429
+
430
+ ## Evaluation
431
+
432
+ ### Metrics
433
+
434
+ #### Information Retrieval
435
+
436
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
437
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
438
+
439
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
440
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
441
+ | cosine_accuracy@1 | 0.7778 | 0.7778 | 0.7778 | 0.7778 | 0.7778 |
442
+ | cosine_accuracy@3 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
443
+ | cosine_accuracy@5 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
444
+ | cosine_accuracy@10 | 0.8889 | 1.0 | 1.0 | 1.0 | 1.0 |
445
+ | cosine_precision@1 | 0.7778 | 0.7778 | 0.7778 | 0.7778 | 0.7778 |
446
+ | cosine_precision@3 | 0.2963 | 0.2963 | 0.2963 | 0.2963 | 0.2963 |
447
+ | cosine_precision@5 | 0.1778 | 0.1778 | 0.1778 | 0.1778 | 0.1778 |
448
+ | cosine_precision@10 | 0.0889 | 0.1 | 0.1 | 0.1 | 0.1 |
449
+ | cosine_recall@1 | 0.7778 | 0.7778 | 0.7778 | 0.7778 | 0.7778 |
450
+ | cosine_recall@3 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
451
+ | cosine_recall@5 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
452
+ | cosine_recall@10 | 0.8889 | 1.0 | 1.0 | 1.0 | 1.0 |
453
+ | **cosine_ndcg@10** | **0.8333** | **0.8813** | **0.8849** | **0.8813** | **0.8849** |
454
+ | cosine_mrr@10 | 0.8148 | 0.8457 | 0.8492 | 0.8457 | 0.8492 |
455
+ | cosine_map@100 | 0.8249 | 0.8457 | 0.8492 | 0.8457 | 0.8492 |
456
+
457
+ <!--
458
+ ## Bias, Risks and Limitations
459
+
460
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
461
+ -->
462
+
463
+ <!--
464
+ ### Recommendations
465
+
466
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
467
+ -->
468
+
469
+ ## Training Details
470
+
471
+ ### Training Dataset
472
+
473
+ #### json
474
+
475
+ * Dataset: json
476
+ * Size: 34 training samples
477
+ * Columns: <code>anchor</code> and <code>positive</code>
478
+ * Approximate statistics based on the first 34 samples:
479
+ | | anchor | positive |
480
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
481
+ | type | string | string |
482
+ | details | <ul><li>min: 8 tokens</li><li>mean: 13.85 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 53.62 tokens</li><li>max: 76 tokens</li></ul> |
483
+ * Samples:
484
+ | anchor | positive |
485
+ |:-----------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
486
+ | <code>Qual é o objetivo do Simplifica?</code> | <code>O objetivo do Simplifica é implementar e disseminar a Linguagem Simples no Ministério Público do Estado do Acre, tornando a comunicação institucional mais acessível, clara e objetiva para todos os cidadãos.</code> |
487
+ | <code>Qual é a função do NAT no LAB-LD?</code> | <code>O NAT gerencia o LAB-LD, oferecendo suporte especializado em investigações financeiras para combater a lavagem de dinheiro.</code> |
488
+ | <code>O que é o NAT?</code> | <code>O NAT, Núcleo de Apoio Técnico, é uma unidade do Ministério Público do Estado do Acre criada em 2012 para oferecer apoio técnico, científico e de segurança aos órgãos de execução do MPAC.</code> |
489
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
490
+ ```json
491
+ {
492
+ "loss": "MultipleNegativesRankingLoss",
493
+ "matryoshka_dims": [
494
+ 768,
495
+ 512,
496
+ 256,
497
+ 128,
498
+ 64
499
+ ],
500
+ "matryoshka_weights": [
501
+ 1,
502
+ 1,
503
+ 1,
504
+ 1,
505
+ 1
506
+ ],
507
+ "n_dims_per_step": -1
508
+ }
509
+ ```
510
+
511
+ ### Training Hyperparameters
512
+ #### Non-Default Hyperparameters
513
+
514
+ - `eval_strategy`: epoch
515
+ - `per_device_train_batch_size`: 32
516
+ - `per_device_eval_batch_size`: 16
517
+ - `gradient_accumulation_steps`: 16
518
+ - `learning_rate`: 2e-05
519
+ - `num_train_epochs`: 5
520
+ - `lr_scheduler_type`: cosine
521
+ - `warmup_ratio`: 0.1
522
+ - `bf16`: True
523
+ - `tf32`: True
524
+ - `load_best_model_at_end`: True
525
+ - `optim`: adamw_torch_fused
526
+ - `batch_sampler`: no_duplicates
527
+
528
+ #### All Hyperparameters
529
+ <details><summary>Click to expand</summary>
530
+
531
+ - `overwrite_output_dir`: False
532
+ - `do_predict`: False
533
+ - `eval_strategy`: epoch
534
+ - `prediction_loss_only`: True
535
+ - `per_device_train_batch_size`: 32
536
+ - `per_device_eval_batch_size`: 16
537
+ - `per_gpu_train_batch_size`: None
538
+ - `per_gpu_eval_batch_size`: None
539
+ - `gradient_accumulation_steps`: 16
540
+ - `eval_accumulation_steps`: None
541
+ - `learning_rate`: 2e-05
542
+ - `weight_decay`: 0.0
543
+ - `adam_beta1`: 0.9
544
+ - `adam_beta2`: 0.999
545
+ - `adam_epsilon`: 1e-08
546
+ - `max_grad_norm`: 1.0
547
+ - `num_train_epochs`: 5
548
+ - `max_steps`: -1
549
+ - `lr_scheduler_type`: cosine
550
+ - `lr_scheduler_kwargs`: {}
551
+ - `warmup_ratio`: 0.1
552
+ - `warmup_steps`: 0
553
+ - `log_level`: passive
554
+ - `log_level_replica`: warning
555
+ - `log_on_each_node`: True
556
+ - `logging_nan_inf_filter`: True
557
+ - `save_safetensors`: True
558
+ - `save_on_each_node`: False
559
+ - `save_only_model`: False
560
+ - `restore_callback_states_from_checkpoint`: False
561
+ - `no_cuda`: False
562
+ - `use_cpu`: False
563
+ - `use_mps_device`: False
564
+ - `seed`: 42
565
+ - `data_seed`: None
566
+ - `jit_mode_eval`: False
567
+ - `use_ipex`: False
568
+ - `bf16`: True
569
+ - `fp16`: False
570
+ - `fp16_opt_level`: O1
571
+ - `half_precision_backend`: auto
572
+ - `bf16_full_eval`: False
573
+ - `fp16_full_eval`: False
574
+ - `tf32`: True
575
+ - `local_rank`: 0
576
+ - `ddp_backend`: None
577
+ - `tpu_num_cores`: None
578
+ - `tpu_metrics_debug`: False
579
+ - `debug`: []
580
+ - `dataloader_drop_last`: False
581
+ - `dataloader_num_workers`: 0
582
+ - `dataloader_prefetch_factor`: None
583
+ - `past_index`: -1
584
+ - `disable_tqdm`: False
585
+ - `remove_unused_columns`: True
586
+ - `label_names`: None
587
+ - `load_best_model_at_end`: True
588
+ - `ignore_data_skip`: False
589
+ - `fsdp`: []
590
+ - `fsdp_min_num_params`: 0
591
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
592
+ - `fsdp_transformer_layer_cls_to_wrap`: None
593
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
594
+ - `deepspeed`: None
595
+ - `label_smoothing_factor`: 0.0
596
+ - `optim`: adamw_torch_fused
597
+ - `optim_args`: None
598
+ - `adafactor`: False
599
+ - `group_by_length`: False
600
+ - `length_column_name`: length
601
+ - `ddp_find_unused_parameters`: None
602
+ - `ddp_bucket_cap_mb`: None
603
+ - `ddp_broadcast_buffers`: False
604
+ - `dataloader_pin_memory`: True
605
+ - `dataloader_persistent_workers`: False
606
+ - `skip_memory_metrics`: True
607
+ - `use_legacy_prediction_loop`: False
608
+ - `push_to_hub`: False
609
+ - `resume_from_checkpoint`: None
610
+ - `hub_model_id`: None
611
+ - `hub_strategy`: every_save
612
+ - `hub_private_repo`: False
613
+ - `hub_always_push`: False
614
+ - `gradient_checkpointing`: False
615
+ - `gradient_checkpointing_kwargs`: None
616
+ - `include_inputs_for_metrics`: False
617
+ - `eval_do_concat_batches`: True
618
+ - `fp16_backend`: auto
619
+ - `push_to_hub_model_id`: None
620
+ - `push_to_hub_organization`: None
621
+ - `mp_parameters`:
622
+ - `auto_find_batch_size`: False
623
+ - `full_determinism`: False
624
+ - `torchdynamo`: None
625
+ - `ray_scope`: last
626
+ - `ddp_timeout`: 1800
627
+ - `torch_compile`: False
628
+ - `torch_compile_backend`: None
629
+ - `torch_compile_mode`: None
630
+ - `dispatch_batches`: None
631
+ - `split_batches`: None
632
+ - `include_tokens_per_second`: False
633
+ - `include_num_input_tokens_seen`: False
634
+ - `neftune_noise_alpha`: None
635
+ - `optim_target_modules`: None
636
+ - `batch_eval_metrics`: False
637
+ - `prompts`: None
638
+ - `batch_sampler`: no_duplicates
639
+ - `multi_dataset_batch_sampler`: proportional
640
+
641
+ </details>
642
+
643
+ ### Training Logs
644
+ | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
645
+ |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
646
+ | 1.0 | 1 | 0.7368 | 0.7368 | 0.7222 | 0.6686 | 0.7222 |
647
+ | 2.0 | 2 | 0.8128 | 0.7738 | 0.7292 | 0.7738 | 0.7702 |
648
+ | 3.0 | 3 | 0.8256 | 0.8258 | 0.8542 | 0.8800 | 0.8591 |
649
+ | **4.0** | **4** | **0.8333** | **0.8258** | **0.8704** | **0.8813** | **0.8829** |
650
+ | 5.0 | 5 | 0.8333 | 0.8813 | 0.8849 | 0.8813 | 0.8849 |
651
+
652
+ * The bold row denotes the saved checkpoint.
653
+
654
+ ### Framework Versions
655
+ - Python: 3.12.7
656
+ - Sentence Transformers: 3.3.1
657
+ - Transformers: 4.41.2
658
+ - PyTorch: 2.5.1+cu124
659
+ - Accelerate: 1.1.1
660
+ - Datasets: 3.1.0
661
+ - Tokenizers: 0.19.1
662
+
663
+ ## Citation
664
+
665
+ ### BibTeX
666
+
667
+ #### Sentence Transformers
668
+ ```bibtex
669
+ @inproceedings{reimers-2019-sentence-bert,
670
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
671
+ author = "Reimers, Nils and Gurevych, Iryna",
672
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
673
+ month = "11",
674
+ year = "2019",
675
+ publisher = "Association for Computational Linguistics",
676
+ url = "https://arxiv.org/abs/1908.10084",
677
+ }
678
+ ```
679
+
680
+ #### MatryoshkaLoss
681
+ ```bibtex
682
+ @misc{kusupati2024matryoshka,
683
+ title={Matryoshka Representation Learning},
684
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
685
+ year={2024},
686
+ eprint={2205.13147},
687
+ archivePrefix={arXiv},
688
+ primaryClass={cs.LG}
689
+ }
690
+ ```
691
+
692
+ #### MultipleNegativesRankingLoss
693
+ ```bibtex
694
+ @misc{henderson2017efficient,
695
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
696
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
697
+ year={2017},
698
+ eprint={1705.00652},
699
+ archivePrefix={arXiv},
700
+ primaryClass={cs.CL}
701
+ }
702
+ ```
703
+
704
+ <!--
705
+ ## Glossary
706
+
707
+ *Clearly define terms in order to be accessible across audiences.*
708
+ -->
709
+
710
+ <!--
711
+ ## Model Card Authors
712
+
713
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
714
+ -->
715
+
716
+ <!--
717
+ ## Model Card Contact
718
+
719
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
720
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c37fcfc9988db929b7b266dd6d285d87a90b41229f78252be6e1118ae74d1aa
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff