Update pipeline.py
Browse files- pipeline.py +21 -30
pipeline.py
CHANGED
@@ -1,37 +1,25 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
from fastai.learner import load_learner
|
3 |
-
import fastai
|
4 |
-
from fastbook import *
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
import json
|
8 |
import numpy as np
|
9 |
|
10 |
-
dls = DataBlock(
|
11 |
-
blocks=(ImageBlock, CategoryBlock),
|
12 |
-
get_items=get_image_files,
|
13 |
-
splitter=RandomSplitter(valid_pct=0.2, seed=42),
|
14 |
-
get_y=parent_label,
|
15 |
-
item_tfms=[Resize(192, method='squish')]
|
16 |
-
).dataloaders(path, bs=32)
|
17 |
-
|
18 |
-
print('PIPELINE')
|
19 |
-
|
20 |
class ImageClassificationPipeline:
|
21 |
-
def __init__(self, path=""):
|
22 |
-
# IMPLEMENT_THIS
|
23 |
-
# Preload all the elements you are going to need at inference.
|
24 |
-
# For instance your model, processors, tokenizer that might be needed.
|
25 |
-
# This function is only called once, so do all the heavy processing I/O here"""
|
26 |
-
print('init')
|
27 |
-
self.model = load_learner(os.path.join(path, "model.pkl"))
|
28 |
-
with open(os.path.join(path, "config.json")) as config:
|
29 |
-
config = json.load(config)
|
30 |
-
self.labels = config["labels"]
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
Args:
|
36 |
inputs (:obj:`PIL.Image`):
|
37 |
The raw image representation as PIL.
|
@@ -40,8 +28,11 @@ class ImageClassificationPipeline:
|
|
40 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
41 |
It is preferred if the returned list is in decreasing `score` order
|
42 |
"""
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
from fastai.learner import load_learner
|
|
|
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
import json
|
6 |
import numpy as np
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
class ImageClassificationPipeline:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def __init__(self, path=""):
|
11 |
+
# IMPLEMENT_THIS
|
12 |
+
# Preload all the elements you are going to need at inference.
|
13 |
+
# For instance your model, processors, tokenizer that might be needed.
|
14 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
15 |
+
self.model = load_learner(os.path.join(path, "model.pkl"))
|
16 |
+
with open(os.path.join(path, "config.json")) as config:
|
17 |
+
config = json.load(config)
|
18 |
+
self.labels = config["labels"]
|
19 |
+
|
20 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
21 |
+
print('call')
|
22 |
+
"""
|
23 |
Args:
|
24 |
inputs (:obj:`PIL.Image`):
|
25 |
The raw image representation as PIL.
|
|
|
28 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
29 |
It is preferred if the returned list is in decreasing `score` order
|
30 |
"""
|
31 |
+
# IMPLEMENT_THIS
|
32 |
+
# FastAI expects a np array, not a PIL Image.
|
33 |
+
_, _, preds = self.model.predict(np.array(inputs))
|
34 |
+
preds = preds.tolist()
|
35 |
+
return [{
|
36 |
+
"label": label,
|
37 |
+
"score": preds[idx]
|
38 |
+
} for idx, label in enumerate(self.labels)]
|