mpoyraz commited on
Commit
0a89c9c
1 Parent(s): b75ce12

add the model card

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language: tr
4
+ tags:
5
+ - automatic-speech-recognition
6
+ - common_voice
7
+ - mozilla-foundation/common_voice_8_0
8
+ - tr
9
+ - robust-speech-event
10
+ datasets:
11
+ - mozilla-foundation/common_voice_8_0
12
+ model-index:
13
+ - name: mpoyraz/wav2vec2-xls-r-300m-cv8-turkish
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 8
20
+ type: mozilla-foundation/common_voice_8_0
21
+ args: tr
22
+ metrics:
23
+ - name: Test WER
24
+ type: wer
25
+ value: 10.61
26
+ - name: Test CER
27
+ type: cer
28
+ value: 2.67
29
+ - task:
30
+ name: Automatic Speech Recognition
31
+ type: automatic-speech-recognition
32
+ dataset:
33
+ name: Robust Speech Event - Dev Data
34
+ type: speech-recognition-community-v2/dev_data
35
+ args: tr
36
+ metrics:
37
+ - name: Test WER
38
+ type: wer
39
+ value: 36.46
40
+ - name: Test CER
41
+ type: cer
42
+ value: 12.38
43
+ ---
44
+
45
+ # wav2vec2-xls-r-300m-cv8-turkish
46
+
47
+ ## Model description
48
+ This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language.
49
+
50
+ ## Training and evaluation data
51
+ The following datasets were used for finetuning:
52
+ - [Common Voice 8.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) All `validated` split except `test` split was used for training.
53
+
54
+ ## Training procedure
55
+ To support the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose.
56
+
57
+ ### Training hyperparameters
58
+ The following hypermaters were used for finetuning:
59
+ - learning_rate 2.5e-4
60
+ - num_train_epochs 20
61
+ - warmup_steps 500
62
+ - freeze_feature_extractor
63
+ - mask_time_prob 0.1
64
+ - mask_feature_prob 0.1
65
+ - feat_proj_dropout 0.05
66
+ - attention_dropout 0.05
67
+ - final_dropout 0.1
68
+ - activation_dropout 0.05
69
+ - per_device_train_batch_size 8
70
+ - per_device_eval_batch_size 8
71
+ - gradient_accumulation_steps 8
72
+
73
+ ### Framework versions
74
+ - Transformers 4.17.0.dev0
75
+ - Pytorch 1.10.1
76
+ - Datasets 1.17.0
77
+ - Tokenizers 0.10.3
78
+
79
+ ## Language Model
80
+ N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format.
81
+
82
+ ## Evaluation Commands
83
+ Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing.
84
+ 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
85
+ ```bash
86
+ python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test
87
+ ```
88
+
89
+ 2. To evaluate on `speech-recognition-community-v2/dev_data`
90
+
91
+ ```bash
92
+ python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
93
+ ```
94
+ ## Evaluation results:
95
+
96
+ | Dataset | WER | CER |
97
+ |---|---|---|
98
+ |Common Voice 8 TR test split| 10.61 | 2.67 |
99
+ |Speech Recognition Community dev data| 36.46 | 12.38 |