mpramon commited on
Commit
75920e7
·
1 Parent(s): ece637b

Uploading PPO LunarLander-V2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 282.34 +/- 15.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6af2227d90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6af2227e20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6af2227eb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6af2227f40>", "_build": "<function ActorCriticPolicy._build at 0x7f6af2238040>", "forward": "<function ActorCriticPolicy.forward at 0x7f6af22380d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6af2238160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6af22381f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6af2238280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6af2238310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6af22383a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6af2238430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6af221fd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685531605801746477, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0j5j2+3Y4/U3KLPt1WOL/M2wQ+isOMPQAAAAAAAAAAmlcGvty6gj/ytGK+sDACv3Axar6MbKu9AAAAAAAAAABmBGO9hj2nPzhm6r4OJg6/v0Q5vbvkf74AAAAAAAAAAIpfgD7oNZU+GClzvrI+kL60BZk8D7kzvAAAAAAAAAAAmg4pPcNlfrpxPAQ1U73rL0M1CjvLqm60AACAPwAAgD+z10U+UbTZPWqQgr4T6XW+gvfSvINRJz0AAAAAAAAAAGZy6Dteprc/Y6NwPuBZpz4kBZi7lZOXvAAAAAAAAAAAM5ikvDIlFz4JCDE+Y4KEvr22kj0GRy07AAAAAAAAAADGUAi+wvk/P0STPL03M92+seMHvraymT0AAAAAAAAAAM20wLv26Du6eGcsvq/8RLW665o7gpa6NAAAgD8AAIA/0ydxvqOdZj+z0Hq90OsDv54wgr66el4+AAAAAAAAAADmFQ4+G1WdPUVZ/L0N2l6+XU6OPfVy37wAAAAAAAAAAFq7Hz6NoA4+zVF7vkRFdb7BJcA8GBbKvQAAAAAAAAAAusUSPrYrBT2mHOs84hsYvvUsrj3vXBC9AAAAAAAAAAAmB1e+5Jq8PqOmhD5skMq+R7GSu5IL5z0AAAAAAAAAAGAbML7saiE+24+fPiTujb5LxUc9FjqZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHItd0V8CxOMAWyUS+SMAXSUR0CghdihvitJdX2UKGgGR0BwJ9C6Ymb9aAdLw2gIR0CghmCxu89PdX2UKGgGR0BxEetlqagFaAdL2mgIR0Cght13ljmTdX2UKGgGR0BxsSS5iExqaAdLrmgIR0Cgh3R5TqB3dX2UKGgGR0BxGJ4qwyIpaAdL0mgIR0CgiEDrZ8KHdX2UKGgGR0BwpckcCHRDaAdLr2gIR0CgiMDGtITXdX2UKGgGR0BzXat8uzyCaAdLzmgIR0CgiN7dadMCdX2UKGgGR0Bi6lsguAZsaAdN6ANoCEdAoIl14mkWRHV9lChoBkdAcLoM7U5MlGgHS9BoCEdAoInyVpsXSHV9lChoBkdAcVBMhX8wYmgHS81oCEdAoIpbHAAQx3V9lChoBkdAcGVF6Rhc7mgHS91oCEdAoIqBL/S6UnV9lChoBkdAceSAXVLBbmgHTQMBaAhHQKCKuKBun/F1fZQoaAZHQHE+rBfrrxBoB0vlaAhHQKCK3IDoyKx1fZQoaAZHQG/YOAAhje9oB0u1aAhHQKCLK4Ajps51fZQoaAZHQHJwpB1LamJoB03mAWgIR0Cgi1YhMajvdX2UKGgGR0BxaOJVKf4AaAdL1WgIR0Cgi17o8p1BdX2UKGgGR0BxUetnwob5aAdLo2gIR0Cgi7jKoybhdX2UKGgGR0Byum3XqZ+haAdL7mgIR0Cgi87oSteVdX2UKGgGR0Bwqpf8dgfEaAdLyWgIR0CgjAjNpudgdX2UKGgGR0Bht/hXKbKBaAdN6ANoCEdAoIznCdjG1nV9lChoBkdAdBrDaGpMpWgHS75oCEdAoIzzYK6WgXV9lChoBkdAcQ8FTefqYGgHS7JoCEdAoI0D2zv7WXV9lChoBkdAcSXPn0TURWgHS8toCEdAoI1kU21lXnV9lChoBkdAb1wwgTyrgmgHS7hoCEdAoI1pxo7FKnV9lChoBkdAcdE/BFd9lWgHS9doCEdAoI4fSYw7DHV9lChoBkdAcEyRF7Uoa2gHS8poCEdAoI48lAu7H3V9lChoBkdAcU8mUnogWGgHS6toCEdAoI5N4JNTLnV9lChoBkdAcnHfnOjZc2gHS9poCEdAoI5ng3tKI3V9lChoBkdAcPRHgP3BYWgHS7NoCEdAoI5oWP91l3V9lChoBkdAc6augYgq3GgHS8ZoCEdAoI6PbO/tY3V9lChoBkdAcEL9XtBv72gHS9xoCEdAoI6yCWeHz3V9lChoBkdAcZZUkfLcK2gHS9poCEdAoI9Guq3mWHV9lChoBkdAciOKxLTQV2gHS+xoCEdAoI/HaYeDF3V9lChoBkdAcfzfYSQHRmgHS/1oCEdAoI/UGLUCrHV9lChoBkdAcq86XjU/fWgHS8loCEdAoI/qqdYnv3V9lChoBkdAcaL7el9Br2gHS7VoCEdAoJAhwAEMb3V9lChoBkdAcsLN+LFXJmgHS+loCEdAoJBTsQd0aXV9lChoBkdAcoKkmhM8HWgHS+VoCEdAoJBmfkFOf3V9lChoBkdAcW99ic5Ke2gHS+toCEdAoJDmn4wh4nV9lChoBkdAb7vJcPe54GgHS8doCEdAoJEcZaV2R3V9lChoBkdAcaX++ueSS2gHS9doCEdAoJF1TDO1OXV9lChoBkdAcgXH2RJVbWgHS9BoCEdAoJGCeTV2BHV9lChoBkdAcoQtm+TNdWgHS9ZoCEdAoJGCij+Jg3V9lChoBkdAcCx68QI2O2gHS7xoCEdAoJGJkqc3EXV9lChoBkdAcsORhttQ9GgHS+9oCEdAoJIXwI+nqHV9lChoBkdAcN/icG1QZWgHS/5oCEdAoJIknG828HV9lChoBkdAc8FUyYXwb2gHS95oCEdAoJKLRc/t6XV9lChoBkdAcZDHP/rB02gHS8loCEdAoJKn0TURWnV9lChoBkdAcaicfeUILWgHS6ZoCEdAoJK99fCyhXV9lChoBkdAcVJ8ZDRc/2gHS8loCEdAoJL7UNKAa3V9lChoBkdAcMDUXHim22gHS8BoCEdAoJMJZGKAKHV9lChoBkdAclsypaRp12gHS+NoCEdAoJMeTs6aLHV9lChoBkdAcpEk2xY7rGgHS/NoCEdAoJM+pjtojHV9lChoBkdAbnP1WbPQfWgHS7loCEdAoJNxppN9IHV9lChoBkdAcP9smOU+tGgHS81oCEdAoJPp2bG3nnV9lChoBkdAcMP4jbBXS2gHS71oCEdAoJQRRyfcvnV9lChoBkdAcDilU6xPf2gHS79oCEdAoJQYUQCjlHV9lChoBkdAcOxg5zYEn2gHS9RoCEdAoJRR2pyZKHV9lChoBkdAcL0gJkXk52gHS99oCEdAoJSLuIAOrnV9lChoBkdAcXuBrN4Z/GgHS9JoCEdAoJTpIFvAGnV9lChoBkdAcZhBczImxGgHS9FoCEdAoJTzabnX/nV9lChoBkdAcoLE4ecQRWgHS89oCEdAoJVpV6u4gHV9lChoBkdAblxyp71Iy2gHS8FoCEdAoJWaO7xusXV9lChoBkdAcd4Ttb9qDmgHS7JoCEdAoJWgI6bONnV9lChoBkdAckWftQbdamgHS95oCEdAoJW4KOT7mHV9lChoBkdAcPuKXOW0JGgHS8toCEdAoJWy44Ia+HV9lChoBkdAceDzAeq7y2gHS+loCEdAoJZCwW3z+XV9lChoBkdAcau91EE1VGgHS8poCEdAoJa4co6S1XV9lChoBkdAciuDF6zE8GgHS+9oCEdAoJbDRMN+b3V9lChoBkdAcVzwAlv602gHS8BoCEdAoJbF/z8P4HV9lChoBkdAcoVpxWDHwWgHS8doCEdAoJcjzbvgFXV9lChoBkdAcZ7fu1F6RmgHS6JoCEdAoJc/y/bj+HV9lChoBkdAc4x/TspobmgHTQoBaAhHQKCX34k/r0J1fZQoaAZHQHGPLy+YdABoB0vSaAhHQKCYCSamXPZ1fZQoaAZHQHGXwBxPwd9oB0v2aAhHQKCYHvcafjF1fZQoaAZHQG6Tucc2itdoB0uwaAhHQKCYVuNPxhF1fZQoaAZHQG/bNsN2C/ZoB0u3aAhHQKCYW/pt78h1fZQoaAZHQHFRjC+De0poB0u6aAhHQKCYg//vOQh1fZQoaAZHQHB79pmEoORoB0vXaAhHQKCYnOcDr7h1fZQoaAZHQHAz9Gqgh8poB0vWaAhHQKCY0EJ0GNd1fZQoaAZHQG4FxXnyNGVoB0uyaAhHQKCY76yB06p1fZQoaAZHQHLYKCYkVvdoB0uwaAhHQKCZVWGRFJB1fZQoaAZHQHElTynUDuBoB0u0aAhHQKCZbi83+/B1fZQoaAZHQGa+26kIomZoB03oA2gIR0Cgmc0I1LrYdX2UKGgGR0By1YOqebuuaAdL4GgIR0Cgmhij1wo9dX2UKGgGR0BxRyDaoMrmaAdL0WgIR0Cgmju5rgwXdX2UKGgGR0Bx0Zt4zJp4aAdLuWgIR0CgmpsVtXPrdX2UKGgGR0ByAP/GVAzIaAdL8WgIR0CgmtmseXAudX2UKGgGR0BxmpT1kDp1aAdLw2gIR0CgmuvOY6XCdX2UKGgGR0BudDyJ9AooaAdLs2gIR0Cgmv4c/+sHdX2UKGgGR0BzOJ8Rcu8LaAdNTwJoCEdAoJsCOWBz3nV9lChoBkdAcLOR2bG3nmgHS61oCEdAoJsSvkili3V9lChoBkdAcm8qdYnv2GgHS9hoCEdAoJtFE5Qxe3V9lChoBkdAcCTHJ9y93GgHS8xoCEdAoJtQtL+PzXV9lChoBkdAcNZac7Qsw2gHS6xoCEdAoJvC1mapgnV9lChoBkdAckSBz3h4uGgHS9poCEdAoJvmygPEsXV9lChoBkdAcujA1vVEu2gHS+hoCEdAoJw0vPC2t3V9lChoBkdAczXRdyDIzWgHTQEBaAhHQKCcPFRYRul1fZQoaAZHQHJWMxoIv8JoB0vLaAhHQKCcncB2fTV1fZQoaAZHQG/OLThHbypoB0vAaAhHQKCctKDkELZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 389, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo_LunarLander-mill.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d69f2a227ceadbfe3bc934e462eaae344c23a6e03f431b945364ee4a5b9caa90
3
+ size 146634
ppo_LunarLander-mill/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo_LunarLander-mill/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6af2227d90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6af2227e20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6af2227eb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6af2227f40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6af2238040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6af22380d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6af2238160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6af22381f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6af2238280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6af2238310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6af22383a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6af2238430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6af221fd40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685531605801746477,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0j5j2+3Y4/U3KLPt1WOL/M2wQ+isOMPQAAAAAAAAAAmlcGvty6gj/ytGK+sDACv3Axar6MbKu9AAAAAAAAAABmBGO9hj2nPzhm6r4OJg6/v0Q5vbvkf74AAAAAAAAAAIpfgD7oNZU+GClzvrI+kL60BZk8D7kzvAAAAAAAAAAAmg4pPcNlfrpxPAQ1U73rL0M1CjvLqm60AACAPwAAgD+z10U+UbTZPWqQgr4T6XW+gvfSvINRJz0AAAAAAAAAAGZy6Dteprc/Y6NwPuBZpz4kBZi7lZOXvAAAAAAAAAAAM5ikvDIlFz4JCDE+Y4KEvr22kj0GRy07AAAAAAAAAADGUAi+wvk/P0STPL03M92+seMHvraymT0AAAAAAAAAAM20wLv26Du6eGcsvq/8RLW665o7gpa6NAAAgD8AAIA/0ydxvqOdZj+z0Hq90OsDv54wgr66el4+AAAAAAAAAADmFQ4+G1WdPUVZ/L0N2l6+XU6OPfVy37wAAAAAAAAAAFq7Hz6NoA4+zVF7vkRFdb7BJcA8GBbKvQAAAAAAAAAAusUSPrYrBT2mHOs84hsYvvUsrj3vXBC9AAAAAAAAAAAmB1e+5Jq8PqOmhD5skMq+R7GSu5IL5z0AAAAAAAAAAGAbML7saiE+24+fPiTujb5LxUc9FjqZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHItd0V8CxOMAWyUS+SMAXSUR0CghdihvitJdX2UKGgGR0BwJ9C6Ymb9aAdLw2gIR0CghmCxu89PdX2UKGgGR0BxEetlqagFaAdL2mgIR0Cght13ljmTdX2UKGgGR0BxsSS5iExqaAdLrmgIR0Cgh3R5TqB3dX2UKGgGR0BxGJ4qwyIpaAdL0mgIR0CgiEDrZ8KHdX2UKGgGR0BwpckcCHRDaAdLr2gIR0CgiMDGtITXdX2UKGgGR0BzXat8uzyCaAdLzmgIR0CgiN7dadMCdX2UKGgGR0Bi6lsguAZsaAdN6ANoCEdAoIl14mkWRHV9lChoBkdAcLoM7U5MlGgHS9BoCEdAoInyVpsXSHV9lChoBkdAcVBMhX8wYmgHS81oCEdAoIpbHAAQx3V9lChoBkdAcGVF6Rhc7mgHS91oCEdAoIqBL/S6UnV9lChoBkdAceSAXVLBbmgHTQMBaAhHQKCKuKBun/F1fZQoaAZHQHE+rBfrrxBoB0vlaAhHQKCK3IDoyKx1fZQoaAZHQG/YOAAhje9oB0u1aAhHQKCLK4Ajps51fZQoaAZHQHJwpB1LamJoB03mAWgIR0Cgi1YhMajvdX2UKGgGR0BxaOJVKf4AaAdL1WgIR0Cgi17o8p1BdX2UKGgGR0BxUetnwob5aAdLo2gIR0Cgi7jKoybhdX2UKGgGR0Byum3XqZ+haAdL7mgIR0Cgi87oSteVdX2UKGgGR0Bwqpf8dgfEaAdLyWgIR0CgjAjNpudgdX2UKGgGR0Bht/hXKbKBaAdN6ANoCEdAoIznCdjG1nV9lChoBkdAdBrDaGpMpWgHS75oCEdAoIzzYK6WgXV9lChoBkdAcQ8FTefqYGgHS7JoCEdAoI0D2zv7WXV9lChoBkdAcSXPn0TURWgHS8toCEdAoI1kU21lXnV9lChoBkdAb1wwgTyrgmgHS7hoCEdAoI1pxo7FKnV9lChoBkdAcdE/BFd9lWgHS9doCEdAoI4fSYw7DHV9lChoBkdAcEyRF7Uoa2gHS8poCEdAoI48lAu7H3V9lChoBkdAcU8mUnogWGgHS6toCEdAoI5N4JNTLnV9lChoBkdAcnHfnOjZc2gHS9poCEdAoI5ng3tKI3V9lChoBkdAcPRHgP3BYWgHS7NoCEdAoI5oWP91l3V9lChoBkdAc6augYgq3GgHS8ZoCEdAoI6PbO/tY3V9lChoBkdAcEL9XtBv72gHS9xoCEdAoI6yCWeHz3V9lChoBkdAcZZUkfLcK2gHS9poCEdAoI9Guq3mWHV9lChoBkdAciOKxLTQV2gHS+xoCEdAoI/HaYeDF3V9lChoBkdAcfzfYSQHRmgHS/1oCEdAoI/UGLUCrHV9lChoBkdAcq86XjU/fWgHS8loCEdAoI/qqdYnv3V9lChoBkdAcaL7el9Br2gHS7VoCEdAoJAhwAEMb3V9lChoBkdAcsLN+LFXJmgHS+loCEdAoJBTsQd0aXV9lChoBkdAcoKkmhM8HWgHS+VoCEdAoJBmfkFOf3V9lChoBkdAcW99ic5Ke2gHS+toCEdAoJDmn4wh4nV9lChoBkdAb7vJcPe54GgHS8doCEdAoJEcZaV2R3V9lChoBkdAcaX++ueSS2gHS9doCEdAoJF1TDO1OXV9lChoBkdAcgXH2RJVbWgHS9BoCEdAoJGCeTV2BHV9lChoBkdAcoQtm+TNdWgHS9ZoCEdAoJGCij+Jg3V9lChoBkdAcCx68QI2O2gHS7xoCEdAoJGJkqc3EXV9lChoBkdAcsORhttQ9GgHS+9oCEdAoJIXwI+nqHV9lChoBkdAcN/icG1QZWgHS/5oCEdAoJIknG828HV9lChoBkdAc8FUyYXwb2gHS95oCEdAoJKLRc/t6XV9lChoBkdAcZDHP/rB02gHS8loCEdAoJKn0TURWnV9lChoBkdAcaicfeUILWgHS6ZoCEdAoJK99fCyhXV9lChoBkdAcVJ8ZDRc/2gHS8loCEdAoJL7UNKAa3V9lChoBkdAcMDUXHim22gHS8BoCEdAoJMJZGKAKHV9lChoBkdAclsypaRp12gHS+NoCEdAoJMeTs6aLHV9lChoBkdAcpEk2xY7rGgHS/NoCEdAoJM+pjtojHV9lChoBkdAbnP1WbPQfWgHS7loCEdAoJNxppN9IHV9lChoBkdAcP9smOU+tGgHS81oCEdAoJPp2bG3nnV9lChoBkdAcMP4jbBXS2gHS71oCEdAoJQRRyfcvnV9lChoBkdAcDilU6xPf2gHS79oCEdAoJQYUQCjlHV9lChoBkdAcOxg5zYEn2gHS9RoCEdAoJRR2pyZKHV9lChoBkdAcL0gJkXk52gHS99oCEdAoJSLuIAOrnV9lChoBkdAcXuBrN4Z/GgHS9JoCEdAoJTpIFvAGnV9lChoBkdAcZhBczImxGgHS9FoCEdAoJTzabnX/nV9lChoBkdAcoLE4ecQRWgHS89oCEdAoJVpV6u4gHV9lChoBkdAblxyp71Iy2gHS8FoCEdAoJWaO7xusXV9lChoBkdAcd4Ttb9qDmgHS7JoCEdAoJWgI6bONnV9lChoBkdAckWftQbdamgHS95oCEdAoJW4KOT7mHV9lChoBkdAcPuKXOW0JGgHS8toCEdAoJWy44Ia+HV9lChoBkdAceDzAeq7y2gHS+loCEdAoJZCwW3z+XV9lChoBkdAcau91EE1VGgHS8poCEdAoJa4co6S1XV9lChoBkdAciuDF6zE8GgHS+9oCEdAoJbDRMN+b3V9lChoBkdAcVzwAlv602gHS8BoCEdAoJbF/z8P4HV9lChoBkdAcoVpxWDHwWgHS8doCEdAoJcjzbvgFXV9lChoBkdAcZ7fu1F6RmgHS6JoCEdAoJc/y/bj+HV9lChoBkdAc4x/TspobmgHTQoBaAhHQKCX34k/r0J1fZQoaAZHQHGPLy+YdABoB0vSaAhHQKCYCSamXPZ1fZQoaAZHQHGXwBxPwd9oB0v2aAhHQKCYHvcafjF1fZQoaAZHQG6Tucc2itdoB0uwaAhHQKCYVuNPxhF1fZQoaAZHQG/bNsN2C/ZoB0u3aAhHQKCYW/pt78h1fZQoaAZHQHFRjC+De0poB0u6aAhHQKCYg//vOQh1fZQoaAZHQHB79pmEoORoB0vXaAhHQKCYnOcDr7h1fZQoaAZHQHAz9Gqgh8poB0vWaAhHQKCY0EJ0GNd1fZQoaAZHQG4FxXnyNGVoB0uyaAhHQKCY76yB06p1fZQoaAZHQHLYKCYkVvdoB0uwaAhHQKCZVWGRFJB1fZQoaAZHQHElTynUDuBoB0u0aAhHQKCZbi83+/B1fZQoaAZHQGa+26kIomZoB03oA2gIR0Cgmc0I1LrYdX2UKGgGR0By1YOqebuuaAdL4GgIR0Cgmhij1wo9dX2UKGgGR0BxRyDaoMrmaAdL0WgIR0Cgmju5rgwXdX2UKGgGR0Bx0Zt4zJp4aAdLuWgIR0CgmpsVtXPrdX2UKGgGR0ByAP/GVAzIaAdL8WgIR0CgmtmseXAudX2UKGgGR0BxmpT1kDp1aAdLw2gIR0CgmuvOY6XCdX2UKGgGR0BudDyJ9AooaAdLs2gIR0Cgmv4c/+sHdX2UKGgGR0BzOJ8Rcu8LaAdNTwJoCEdAoJsCOWBz3nV9lChoBkdAcLOR2bG3nmgHS61oCEdAoJsSvkili3V9lChoBkdAcm8qdYnv2GgHS9hoCEdAoJtFE5Qxe3V9lChoBkdAcCTHJ9y93GgHS8xoCEdAoJtQtL+PzXV9lChoBkdAcNZac7Qsw2gHS6xoCEdAoJvC1mapgnV9lChoBkdAckSBz3h4uGgHS9poCEdAoJvmygPEsXV9lChoBkdAcujA1vVEu2gHS+hoCEdAoJw0vPC2t3V9lChoBkdAczXRdyDIzWgHTQEBaAhHQKCcPFRYRul1fZQoaAZHQHJWMxoIv8JoB0vLaAhHQKCcncB2fTV1fZQoaAZHQG/OLThHbypoB0vAaAhHQKCctKDkELZ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 389,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo_LunarLander-mill/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:969e91b71524b311c3e4b1412e73265aaca16ab60b555c66dbf207b5b93845e6
3
+ size 87929
ppo_LunarLander-mill/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c53589023f8d59d2294dfbb2bd3c7343da946e6f63bc206edda4a1f3f683270
3
+ size 43329
ppo_LunarLander-mill/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_LunarLander-mill/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (163 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.3447915627354, "std_reward": 15.169334451625687, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-31T12:22:16.550108"}