Uploading PPO LunarLander-V2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_LunarLander-mill.zip +3 -0
- ppo_LunarLander-mill/_stable_baselines3_version +1 -0
- ppo_LunarLander-mill/data +99 -0
- ppo_LunarLander-mill/policy.optimizer.pth +3 -0
- ppo_LunarLander-mill/policy.pth +3 -0
- ppo_LunarLander-mill/pytorch_variables.pth +3 -0
- ppo_LunarLander-mill/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 282.34 +/- 15.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6af2227d90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6af2227e20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6af2227eb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6af2227f40>", "_build": "<function ActorCriticPolicy._build at 0x7f6af2238040>", "forward": "<function ActorCriticPolicy.forward at 0x7f6af22380d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6af2238160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6af22381f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6af2238280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6af2238310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6af22383a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6af2238430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6af221fd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685531605801746477, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0j5j2+3Y4/U3KLPt1WOL/M2wQ+isOMPQAAAAAAAAAAmlcGvty6gj/ytGK+sDACv3Axar6MbKu9AAAAAAAAAABmBGO9hj2nPzhm6r4OJg6/v0Q5vbvkf74AAAAAAAAAAIpfgD7oNZU+GClzvrI+kL60BZk8D7kzvAAAAAAAAAAAmg4pPcNlfrpxPAQ1U73rL0M1CjvLqm60AACAPwAAgD+z10U+UbTZPWqQgr4T6XW+gvfSvINRJz0AAAAAAAAAAGZy6Dteprc/Y6NwPuBZpz4kBZi7lZOXvAAAAAAAAAAAM5ikvDIlFz4JCDE+Y4KEvr22kj0GRy07AAAAAAAAAADGUAi+wvk/P0STPL03M92+seMHvraymT0AAAAAAAAAAM20wLv26Du6eGcsvq/8RLW665o7gpa6NAAAgD8AAIA/0ydxvqOdZj+z0Hq90OsDv54wgr66el4+AAAAAAAAAADmFQ4+G1WdPUVZ/L0N2l6+XU6OPfVy37wAAAAAAAAAAFq7Hz6NoA4+zVF7vkRFdb7BJcA8GBbKvQAAAAAAAAAAusUSPrYrBT2mHOs84hsYvvUsrj3vXBC9AAAAAAAAAAAmB1e+5Jq8PqOmhD5skMq+R7GSu5IL5z0AAAAAAAAAAGAbML7saiE+24+fPiTujb5LxUc9FjqZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHItd0V8CxOMAWyUS+SMAXSUR0CghdihvitJdX2UKGgGR0BwJ9C6Ymb9aAdLw2gIR0CghmCxu89PdX2UKGgGR0BxEetlqagFaAdL2mgIR0Cght13ljmTdX2UKGgGR0BxsSS5iExqaAdLrmgIR0Cgh3R5TqB3dX2UKGgGR0BxGJ4qwyIpaAdL0mgIR0CgiEDrZ8KHdX2UKGgGR0BwpckcCHRDaAdLr2gIR0CgiMDGtITXdX2UKGgGR0BzXat8uzyCaAdLzmgIR0CgiN7dadMCdX2UKGgGR0Bi6lsguAZsaAdN6ANoCEdAoIl14mkWRHV9lChoBkdAcLoM7U5MlGgHS9BoCEdAoInyVpsXSHV9lChoBkdAcVBMhX8wYmgHS81oCEdAoIpbHAAQx3V9lChoBkdAcGVF6Rhc7mgHS91oCEdAoIqBL/S6UnV9lChoBkdAceSAXVLBbmgHTQMBaAhHQKCKuKBun/F1fZQoaAZHQHE+rBfrrxBoB0vlaAhHQKCK3IDoyKx1fZQoaAZHQG/YOAAhje9oB0u1aAhHQKCLK4Ajps51fZQoaAZHQHJwpB1LamJoB03mAWgIR0Cgi1YhMajvdX2UKGgGR0BxaOJVKf4AaAdL1WgIR0Cgi17o8p1BdX2UKGgGR0BxUetnwob5aAdLo2gIR0Cgi7jKoybhdX2UKGgGR0Byum3XqZ+haAdL7mgIR0Cgi87oSteVdX2UKGgGR0Bwqpf8dgfEaAdLyWgIR0CgjAjNpudgdX2UKGgGR0Bht/hXKbKBaAdN6ANoCEdAoIznCdjG1nV9lChoBkdAdBrDaGpMpWgHS75oCEdAoIzzYK6WgXV9lChoBkdAcQ8FTefqYGgHS7JoCEdAoI0D2zv7WXV9lChoBkdAcSXPn0TURWgHS8toCEdAoI1kU21lXnV9lChoBkdAb1wwgTyrgmgHS7hoCEdAoI1pxo7FKnV9lChoBkdAcdE/BFd9lWgHS9doCEdAoI4fSYw7DHV9lChoBkdAcEyRF7Uoa2gHS8poCEdAoI48lAu7H3V9lChoBkdAcU8mUnogWGgHS6toCEdAoI5N4JNTLnV9lChoBkdAcnHfnOjZc2gHS9poCEdAoI5ng3tKI3V9lChoBkdAcPRHgP3BYWgHS7NoCEdAoI5oWP91l3V9lChoBkdAc6augYgq3GgHS8ZoCEdAoI6PbO/tY3V9lChoBkdAcEL9XtBv72gHS9xoCEdAoI6yCWeHz3V9lChoBkdAcZZUkfLcK2gHS9poCEdAoI9Guq3mWHV9lChoBkdAciOKxLTQV2gHS+xoCEdAoI/HaYeDF3V9lChoBkdAcfzfYSQHRmgHS/1oCEdAoI/UGLUCrHV9lChoBkdAcq86XjU/fWgHS8loCEdAoI/qqdYnv3V9lChoBkdAcaL7el9Br2gHS7VoCEdAoJAhwAEMb3V9lChoBkdAcsLN+LFXJmgHS+loCEdAoJBTsQd0aXV9lChoBkdAcoKkmhM8HWgHS+VoCEdAoJBmfkFOf3V9lChoBkdAcW99ic5Ke2gHS+toCEdAoJDmn4wh4nV9lChoBkdAb7vJcPe54GgHS8doCEdAoJEcZaV2R3V9lChoBkdAcaX++ueSS2gHS9doCEdAoJF1TDO1OXV9lChoBkdAcgXH2RJVbWgHS9BoCEdAoJGCeTV2BHV9lChoBkdAcoQtm+TNdWgHS9ZoCEdAoJGCij+Jg3V9lChoBkdAcCx68QI2O2gHS7xoCEdAoJGJkqc3EXV9lChoBkdAcsORhttQ9GgHS+9oCEdAoJIXwI+nqHV9lChoBkdAcN/icG1QZWgHS/5oCEdAoJIknG828HV9lChoBkdAc8FUyYXwb2gHS95oCEdAoJKLRc/t6XV9lChoBkdAcZDHP/rB02gHS8loCEdAoJKn0TURWnV9lChoBkdAcaicfeUILWgHS6ZoCEdAoJK99fCyhXV9lChoBkdAcVJ8ZDRc/2gHS8loCEdAoJL7UNKAa3V9lChoBkdAcMDUXHim22gHS8BoCEdAoJMJZGKAKHV9lChoBkdAclsypaRp12gHS+NoCEdAoJMeTs6aLHV9lChoBkdAcpEk2xY7rGgHS/NoCEdAoJM+pjtojHV9lChoBkdAbnP1WbPQfWgHS7loCEdAoJNxppN9IHV9lChoBkdAcP9smOU+tGgHS81oCEdAoJPp2bG3nnV9lChoBkdAcMP4jbBXS2gHS71oCEdAoJQRRyfcvnV9lChoBkdAcDilU6xPf2gHS79oCEdAoJQYUQCjlHV9lChoBkdAcOxg5zYEn2gHS9RoCEdAoJRR2pyZKHV9lChoBkdAcL0gJkXk52gHS99oCEdAoJSLuIAOrnV9lChoBkdAcXuBrN4Z/GgHS9JoCEdAoJTpIFvAGnV9lChoBkdAcZhBczImxGgHS9FoCEdAoJTzabnX/nV9lChoBkdAcoLE4ecQRWgHS89oCEdAoJVpV6u4gHV9lChoBkdAblxyp71Iy2gHS8FoCEdAoJWaO7xusXV9lChoBkdAcd4Ttb9qDmgHS7JoCEdAoJWgI6bONnV9lChoBkdAckWftQbdamgHS95oCEdAoJW4KOT7mHV9lChoBkdAcPuKXOW0JGgHS8toCEdAoJWy44Ia+HV9lChoBkdAceDzAeq7y2gHS+loCEdAoJZCwW3z+XV9lChoBkdAcau91EE1VGgHS8poCEdAoJa4co6S1XV9lChoBkdAciuDF6zE8GgHS+9oCEdAoJbDRMN+b3V9lChoBkdAcVzwAlv602gHS8BoCEdAoJbF/z8P4HV9lChoBkdAcoVpxWDHwWgHS8doCEdAoJcjzbvgFXV9lChoBkdAcZ7fu1F6RmgHS6JoCEdAoJc/y/bj+HV9lChoBkdAc4x/TspobmgHTQoBaAhHQKCX34k/r0J1fZQoaAZHQHGPLy+YdABoB0vSaAhHQKCYCSamXPZ1fZQoaAZHQHGXwBxPwd9oB0v2aAhHQKCYHvcafjF1fZQoaAZHQG6Tucc2itdoB0uwaAhHQKCYVuNPxhF1fZQoaAZHQG/bNsN2C/ZoB0u3aAhHQKCYW/pt78h1fZQoaAZHQHFRjC+De0poB0u6aAhHQKCYg//vOQh1fZQoaAZHQHB79pmEoORoB0vXaAhHQKCYnOcDr7h1fZQoaAZHQHAz9Gqgh8poB0vWaAhHQKCY0EJ0GNd1fZQoaAZHQG4FxXnyNGVoB0uyaAhHQKCY76yB06p1fZQoaAZHQHLYKCYkVvdoB0uwaAhHQKCZVWGRFJB1fZQoaAZHQHElTynUDuBoB0u0aAhHQKCZbi83+/B1fZQoaAZHQGa+26kIomZoB03oA2gIR0Cgmc0I1LrYdX2UKGgGR0By1YOqebuuaAdL4GgIR0Cgmhij1wo9dX2UKGgGR0BxRyDaoMrmaAdL0WgIR0Cgmju5rgwXdX2UKGgGR0Bx0Zt4zJp4aAdLuWgIR0CgmpsVtXPrdX2UKGgGR0ByAP/GVAzIaAdL8WgIR0CgmtmseXAudX2UKGgGR0BxmpT1kDp1aAdLw2gIR0CgmuvOY6XCdX2UKGgGR0BudDyJ9AooaAdLs2gIR0Cgmv4c/+sHdX2UKGgGR0BzOJ8Rcu8LaAdNTwJoCEdAoJsCOWBz3nV9lChoBkdAcLOR2bG3nmgHS61oCEdAoJsSvkili3V9lChoBkdAcm8qdYnv2GgHS9hoCEdAoJtFE5Qxe3V9lChoBkdAcCTHJ9y93GgHS8xoCEdAoJtQtL+PzXV9lChoBkdAcNZac7Qsw2gHS6xoCEdAoJvC1mapgnV9lChoBkdAckSBz3h4uGgHS9poCEdAoJvmygPEsXV9lChoBkdAcujA1vVEu2gHS+hoCEdAoJw0vPC2t3V9lChoBkdAczXRdyDIzWgHTQEBaAhHQKCcPFRYRul1fZQoaAZHQHJWMxoIv8JoB0vLaAhHQKCcncB2fTV1fZQoaAZHQG/OLThHbypoB0vAaAhHQKCctKDkELZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 389, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo_LunarLander-mill.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d69f2a227ceadbfe3bc934e462eaae344c23a6e03f431b945364ee4a5b9caa90
|
3 |
+
size 146634
|
ppo_LunarLander-mill/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo_LunarLander-mill/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6af2227d90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6af2227e20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6af2227eb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6af2227f40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6af2238040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6af22380d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6af2238160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6af22381f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6af2238280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6af2238310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6af22383a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6af2238430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6af221fd40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685531605801746477,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0j5j2+3Y4/U3KLPt1WOL/M2wQ+isOMPQAAAAAAAAAAmlcGvty6gj/ytGK+sDACv3Axar6MbKu9AAAAAAAAAABmBGO9hj2nPzhm6r4OJg6/v0Q5vbvkf74AAAAAAAAAAIpfgD7oNZU+GClzvrI+kL60BZk8D7kzvAAAAAAAAAAAmg4pPcNlfrpxPAQ1U73rL0M1CjvLqm60AACAPwAAgD+z10U+UbTZPWqQgr4T6XW+gvfSvINRJz0AAAAAAAAAAGZy6Dteprc/Y6NwPuBZpz4kBZi7lZOXvAAAAAAAAAAAM5ikvDIlFz4JCDE+Y4KEvr22kj0GRy07AAAAAAAAAADGUAi+wvk/P0STPL03M92+seMHvraymT0AAAAAAAAAAM20wLv26Du6eGcsvq/8RLW665o7gpa6NAAAgD8AAIA/0ydxvqOdZj+z0Hq90OsDv54wgr66el4+AAAAAAAAAADmFQ4+G1WdPUVZ/L0N2l6+XU6OPfVy37wAAAAAAAAAAFq7Hz6NoA4+zVF7vkRFdb7BJcA8GBbKvQAAAAAAAAAAusUSPrYrBT2mHOs84hsYvvUsrj3vXBC9AAAAAAAAAAAmB1e+5Jq8PqOmhD5skMq+R7GSu5IL5z0AAAAAAAAAAGAbML7saiE+24+fPiTujb5LxUc9FjqZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHItd0V8CxOMAWyUS+SMAXSUR0CghdihvitJdX2UKGgGR0BwJ9C6Ymb9aAdLw2gIR0CghmCxu89PdX2UKGgGR0BxEetlqagFaAdL2mgIR0Cght13ljmTdX2UKGgGR0BxsSS5iExqaAdLrmgIR0Cgh3R5TqB3dX2UKGgGR0BxGJ4qwyIpaAdL0mgIR0CgiEDrZ8KHdX2UKGgGR0BwpckcCHRDaAdLr2gIR0CgiMDGtITXdX2UKGgGR0BzXat8uzyCaAdLzmgIR0CgiN7dadMCdX2UKGgGR0Bi6lsguAZsaAdN6ANoCEdAoIl14mkWRHV9lChoBkdAcLoM7U5MlGgHS9BoCEdAoInyVpsXSHV9lChoBkdAcVBMhX8wYmgHS81oCEdAoIpbHAAQx3V9lChoBkdAcGVF6Rhc7mgHS91oCEdAoIqBL/S6UnV9lChoBkdAceSAXVLBbmgHTQMBaAhHQKCKuKBun/F1fZQoaAZHQHE+rBfrrxBoB0vlaAhHQKCK3IDoyKx1fZQoaAZHQG/YOAAhje9oB0u1aAhHQKCLK4Ajps51fZQoaAZHQHJwpB1LamJoB03mAWgIR0Cgi1YhMajvdX2UKGgGR0BxaOJVKf4AaAdL1WgIR0Cgi17o8p1BdX2UKGgGR0BxUetnwob5aAdLo2gIR0Cgi7jKoybhdX2UKGgGR0Byum3XqZ+haAdL7mgIR0Cgi87oSteVdX2UKGgGR0Bwqpf8dgfEaAdLyWgIR0CgjAjNpudgdX2UKGgGR0Bht/hXKbKBaAdN6ANoCEdAoIznCdjG1nV9lChoBkdAdBrDaGpMpWgHS75oCEdAoIzzYK6WgXV9lChoBkdAcQ8FTefqYGgHS7JoCEdAoI0D2zv7WXV9lChoBkdAcSXPn0TURWgHS8toCEdAoI1kU21lXnV9lChoBkdAb1wwgTyrgmgHS7hoCEdAoI1pxo7FKnV9lChoBkdAcdE/BFd9lWgHS9doCEdAoI4fSYw7DHV9lChoBkdAcEyRF7Uoa2gHS8poCEdAoI48lAu7H3V9lChoBkdAcU8mUnogWGgHS6toCEdAoI5N4JNTLnV9lChoBkdAcnHfnOjZc2gHS9poCEdAoI5ng3tKI3V9lChoBkdAcPRHgP3BYWgHS7NoCEdAoI5oWP91l3V9lChoBkdAc6augYgq3GgHS8ZoCEdAoI6PbO/tY3V9lChoBkdAcEL9XtBv72gHS9xoCEdAoI6yCWeHz3V9lChoBkdAcZZUkfLcK2gHS9poCEdAoI9Guq3mWHV9lChoBkdAciOKxLTQV2gHS+xoCEdAoI/HaYeDF3V9lChoBkdAcfzfYSQHRmgHS/1oCEdAoI/UGLUCrHV9lChoBkdAcq86XjU/fWgHS8loCEdAoI/qqdYnv3V9lChoBkdAcaL7el9Br2gHS7VoCEdAoJAhwAEMb3V9lChoBkdAcsLN+LFXJmgHS+loCEdAoJBTsQd0aXV9lChoBkdAcoKkmhM8HWgHS+VoCEdAoJBmfkFOf3V9lChoBkdAcW99ic5Ke2gHS+toCEdAoJDmn4wh4nV9lChoBkdAb7vJcPe54GgHS8doCEdAoJEcZaV2R3V9lChoBkdAcaX++ueSS2gHS9doCEdAoJF1TDO1OXV9lChoBkdAcgXH2RJVbWgHS9BoCEdAoJGCeTV2BHV9lChoBkdAcoQtm+TNdWgHS9ZoCEdAoJGCij+Jg3V9lChoBkdAcCx68QI2O2gHS7xoCEdAoJGJkqc3EXV9lChoBkdAcsORhttQ9GgHS+9oCEdAoJIXwI+nqHV9lChoBkdAcN/icG1QZWgHS/5oCEdAoJIknG828HV9lChoBkdAc8FUyYXwb2gHS95oCEdAoJKLRc/t6XV9lChoBkdAcZDHP/rB02gHS8loCEdAoJKn0TURWnV9lChoBkdAcaicfeUILWgHS6ZoCEdAoJK99fCyhXV9lChoBkdAcVJ8ZDRc/2gHS8loCEdAoJL7UNKAa3V9lChoBkdAcMDUXHim22gHS8BoCEdAoJMJZGKAKHV9lChoBkdAclsypaRp12gHS+NoCEdAoJMeTs6aLHV9lChoBkdAcpEk2xY7rGgHS/NoCEdAoJM+pjtojHV9lChoBkdAbnP1WbPQfWgHS7loCEdAoJNxppN9IHV9lChoBkdAcP9smOU+tGgHS81oCEdAoJPp2bG3nnV9lChoBkdAcMP4jbBXS2gHS71oCEdAoJQRRyfcvnV9lChoBkdAcDilU6xPf2gHS79oCEdAoJQYUQCjlHV9lChoBkdAcOxg5zYEn2gHS9RoCEdAoJRR2pyZKHV9lChoBkdAcL0gJkXk52gHS99oCEdAoJSLuIAOrnV9lChoBkdAcXuBrN4Z/GgHS9JoCEdAoJTpIFvAGnV9lChoBkdAcZhBczImxGgHS9FoCEdAoJTzabnX/nV9lChoBkdAcoLE4ecQRWgHS89oCEdAoJVpV6u4gHV9lChoBkdAblxyp71Iy2gHS8FoCEdAoJWaO7xusXV9lChoBkdAcd4Ttb9qDmgHS7JoCEdAoJWgI6bONnV9lChoBkdAckWftQbdamgHS95oCEdAoJW4KOT7mHV9lChoBkdAcPuKXOW0JGgHS8toCEdAoJWy44Ia+HV9lChoBkdAceDzAeq7y2gHS+loCEdAoJZCwW3z+XV9lChoBkdAcau91EE1VGgHS8poCEdAoJa4co6S1XV9lChoBkdAciuDF6zE8GgHS+9oCEdAoJbDRMN+b3V9lChoBkdAcVzwAlv602gHS8BoCEdAoJbF/z8P4HV9lChoBkdAcoVpxWDHwWgHS8doCEdAoJcjzbvgFXV9lChoBkdAcZ7fu1F6RmgHS6JoCEdAoJc/y/bj+HV9lChoBkdAc4x/TspobmgHTQoBaAhHQKCX34k/r0J1fZQoaAZHQHGPLy+YdABoB0vSaAhHQKCYCSamXPZ1fZQoaAZHQHGXwBxPwd9oB0v2aAhHQKCYHvcafjF1fZQoaAZHQG6Tucc2itdoB0uwaAhHQKCYVuNPxhF1fZQoaAZHQG/bNsN2C/ZoB0u3aAhHQKCYW/pt78h1fZQoaAZHQHFRjC+De0poB0u6aAhHQKCYg//vOQh1fZQoaAZHQHB79pmEoORoB0vXaAhHQKCYnOcDr7h1fZQoaAZHQHAz9Gqgh8poB0vWaAhHQKCY0EJ0GNd1fZQoaAZHQG4FxXnyNGVoB0uyaAhHQKCY76yB06p1fZQoaAZHQHLYKCYkVvdoB0uwaAhHQKCZVWGRFJB1fZQoaAZHQHElTynUDuBoB0u0aAhHQKCZbi83+/B1fZQoaAZHQGa+26kIomZoB03oA2gIR0Cgmc0I1LrYdX2UKGgGR0By1YOqebuuaAdL4GgIR0Cgmhij1wo9dX2UKGgGR0BxRyDaoMrmaAdL0WgIR0Cgmju5rgwXdX2UKGgGR0Bx0Zt4zJp4aAdLuWgIR0CgmpsVtXPrdX2UKGgGR0ByAP/GVAzIaAdL8WgIR0CgmtmseXAudX2UKGgGR0BxmpT1kDp1aAdLw2gIR0CgmuvOY6XCdX2UKGgGR0BudDyJ9AooaAdLs2gIR0Cgmv4c/+sHdX2UKGgGR0BzOJ8Rcu8LaAdNTwJoCEdAoJsCOWBz3nV9lChoBkdAcLOR2bG3nmgHS61oCEdAoJsSvkili3V9lChoBkdAcm8qdYnv2GgHS9hoCEdAoJtFE5Qxe3V9lChoBkdAcCTHJ9y93GgHS8xoCEdAoJtQtL+PzXV9lChoBkdAcNZac7Qsw2gHS6xoCEdAoJvC1mapgnV9lChoBkdAckSBz3h4uGgHS9poCEdAoJvmygPEsXV9lChoBkdAcujA1vVEu2gHS+hoCEdAoJw0vPC2t3V9lChoBkdAczXRdyDIzWgHTQEBaAhHQKCcPFRYRul1fZQoaAZHQHJWMxoIv8JoB0vLaAhHQKCcncB2fTV1fZQoaAZHQG/OLThHbypoB0vAaAhHQKCctKDkELZ1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 389,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo_LunarLander-mill/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:969e91b71524b311c3e4b1412e73265aaca16ab60b555c66dbf207b5b93845e6
|
3 |
+
size 87929
|
ppo_LunarLander-mill/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c53589023f8d59d2294dfbb2bd3c7343da946e6f63bc206edda4a1f3f683270
|
3 |
+
size 43329
|
ppo_LunarLander-mill/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_LunarLander-mill/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (163 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 282.3447915627354, "std_reward": 15.169334451625687, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-31T12:22:16.550108"}
|