mqliu commited on
Commit
647aab3
1 Parent(s): e88810e

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ mmc4_final_processed.json filter=lfs diff=lfs merge=lfs -text
37
+ mmc4_rewrite_remaining_clean.json filter=lfs diff=lfs merge=lfs -text
38
+ mmc4_rewrite_valid_clean.json filter=lfs diff=lfs merge=lfs -text
mmc4_final_processed.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ea90e50a9cc989ce520864583ee0cf10d8380189d5229ffc4813428cf5bb57
3
+ size 282853941
mmc4_rewrite_remaining_clean.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a2d1943418a25e61ae230a6b0a9f82dd180882bcd8eb6a9d7639c2780e84b32
3
+ size 116077088
mmc4_rewrite_valid_clean.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eca27755707d38ddc0949586fcfb4218afcac276a19a84aee9f55c4878538e23
3
+ size 182441543
rewrite_text_mmc4.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from tqdm import tqdm
4
+ import pdb
5
+
6
+ from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
7
+ import torch
8
+ import random
9
+ import re
10
+
11
+ # change model name
12
+ model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
13
+ # change huggingface token here
14
+ HUGGING_FACE_TOKEN = "<your_huggingface_token>"
15
+
16
+
17
+ output_folder = "mmc4_json_split"
18
+ if not os.path.exists(output_folder):
19
+ os.makedirs(output_folder)
20
+
21
+ # import argparse
22
+ # parser = argparse.ArgumentParser(description="Input file")
23
+
24
+ # parser.add_argument('--split_id', type=str, help='evaluation file name')
25
+
26
+ # args = parser.parse_args()
27
+ # split_id = args.split_id
28
+
29
+ def split_data(data, n):
30
+ k, m = divmod(len(data), n)
31
+ return (data[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n))
32
+
33
+ split_id = 0
34
+
35
+ with open(f"mmc4_final_processed.json", "r") as file:
36
+ full_data = json.load(file)
37
+
38
+ num_splits = 8
39
+ splits = list(split_data(full_data, num_splits))
40
+
41
+ # Take the i-th split
42
+ data = splits[split_id]
43
+ output_data = []
44
+ # instruct_pattern = re.compile(r'<INSTRUCT>(.*?)</INSTRUCT>', re.DOTALL)
45
+ rewrite_pattern = re.compile(r'<REWRITE>(.*?)</REWRITE>|<REWRITE>(.*?)', re.DOTALL)
46
+
47
+ output_path = f"{output_folder}/mmc4_final_split_{split_id}.json"
48
+
49
+ device_id = f"cuda:{split_id}"
50
+ device = torch.device(device_id)
51
+
52
+ model = AutoModelForCausalLM.from_pretrained(
53
+ model_name,
54
+ # use_auth_token=HUGGING_FACE_TOKEN,
55
+ torch_dtype=torch.bfloat16
56
+ # device_map=local_rank
57
+ )
58
+
59
+ tokenizer = AutoTokenizer.from_pretrained(
60
+ model_name,
61
+ model_max_length=2048,
62
+ # padding_side="right",
63
+ # use_fast=False,
64
+ use_auth_token=HUGGING_FACE_TOKEN
65
+ )
66
+
67
+ terminators = [
68
+ tokenizer.eos_token_id,
69
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
70
+ ]
71
+
72
+ model.to(device)
73
+
74
+
75
+ for instance in tqdm(data):
76
+
77
+ conv = instance["conversations"]
78
+ input_text = conv[0]['value']
79
+ input_text = input_text.split("<BEGIN>")[-1]
80
+ output_text = conv[1]['value']
81
+ merge_text = input_text + output_text
82
+
83
+ messages = [
84
+ {"role": "system", "content": f"Imagine you are an expert writer. Given a text material, you need to complete two tasks. You need to rewrite the given text material to improve their quality, including making them more fluent, coherent, natural, engaging, and concise. You must ensure the rewritten text faithfully matches with the original text. Do not modify <image> tokens in the rewritten text. In other words, you must maintain all the image tokens <image> in their relative positions in the rewritten text and the number of <image> tokens in the rewritten text should be exactly same with the original text. Wrap your rewritten text material in the following format: <REWRITE> <your rewritten text here> </REWRITE>."},
85
+ {"role": "user", "content": f"Now given this text material: {merge_text}, annotate the rewritten text material. You must strictly follow the format requriement and you must not add any notes or explanations inside the special tokens <REWRITE> </REWRITE>."},
86
+ ]
87
+ input_ids = tokenizer.apply_chat_template(
88
+ messages,
89
+ add_generation_prompt=True,
90
+ return_tensors="pt"
91
+ ).to(model.device)
92
+ outputs = model.generate(
93
+ input_ids,
94
+ max_new_tokens=1024,
95
+ eos_token_id=terminators,
96
+ do_sample=True,
97
+ temperature=1.0,
98
+ pad_token_id=tokenizer.eos_token_id,
99
+ top_p=0.9
100
+ )
101
+ response = outputs[0][input_ids.shape[-1]:]
102
+ output = tokenizer.decode(response, skip_special_tokens=True)
103
+ output = output.strip()
104
+
105
+ fail_flag = False # flag to indiciate whether rewritting succeed
106
+ match_summ = ""
107
+ try:
108
+ rewrite_text = rewrite_pattern.findall(output)[0]
109
+
110
+ if len(rewrite_text[0]) > 0:
111
+ match_summ = rewrite_text[0]
112
+ elif len(rewrite_text[1]) > 0:
113
+ match_summ = rewrite_text[1]
114
+ else:
115
+ # print("cannot find matched rewrite text")
116
+ fail_flag = True
117
+ except Exception as e:
118
+ print(e)
119
+ fail_flag = True
120
+
121
+ # match_summ = match_summ.strip()
122
+
123
+ num_img = match_summ.count("<image>")
124
+ img_len = len(instance["image"])
125
+ if num_img != img_len or "<image><image>" in match_summ or "<image> <image>" in match_summ:
126
+ # print("wrong <image> token")
127
+ fail_flag = True
128
+
129
+ if fail_flag: # start per sentence rewritting
130
+ # print("start per sentence rewritting......")
131
+ split_text = merge_text.split('<image>')
132
+ split_text = split_text[:-1]
133
+ sent_list = []
134
+ for st in split_text:
135
+ messages = [
136
+ {"role": "system", "content": f"Imagine you are an expert writer. Given a sentence, you need to complete two tasks. You need to rewrite the given sentence to improve its quality, including making them more fluent, coherent, natural, engaging, and concise. You must ensure the rewritten sentence faithfully matches with the original sentence. Wrap your rewritten sentence in the following format: <REWRITE> <your rewritten sentence here> </REWRITE>."},
137
+ {"role": "user", "content": f"Now given this sentence: {st}, annotate the rewritten sentence. You must strictly follow the format requriement and you must not add any notes or explanations inside the special tokens <REWRITE> </REWRITE>."},
138
+ ]
139
+ input_ids = tokenizer.apply_chat_template(
140
+ messages,
141
+ add_generation_prompt=True,
142
+ return_tensors="pt"
143
+ ).to(model.device)
144
+ outputs = model.generate(
145
+ input_ids,
146
+ max_new_tokens=512,
147
+ eos_token_id=terminators,
148
+ do_sample=True,
149
+ temperature=1.0,
150
+ pad_token_id=tokenizer.eos_token_id,
151
+ top_p=0.9
152
+ )
153
+ response = outputs[0][input_ids.shape[-1]:]
154
+ output = tokenizer.decode(response, skip_special_tokens=True)
155
+ output = output.strip()
156
+
157
+ try:
158
+ rewrite_sent = rewrite_pattern.findall(output)[0]
159
+ if len(rewrite_sent[0]) > 0:
160
+ sent = rewrite_sent[0]
161
+ elif len(rewrite_sent[1]) > 0:
162
+ sent = rewrite_sent[1]
163
+ else:
164
+ # print("cannot find matched rewrite sentence")
165
+ sent = st
166
+ except Exception as e:
167
+ print(e)
168
+ sent = st
169
+ sent = sent.strip()
170
+ sent_list.append(sent)
171
+ text_list = sent_list
172
+ else:
173
+ text_list = match_summ.split('<image>')
174
+ text_list = [t.strip() for t in text_list]
175
+
176
+ split_index = random.randint(1, len(text_list) - 2)
177
+ input_list = text_list[:split_index]
178
+ output_list = text_list[split_index:]
179
+
180
+ input_text = " <image>\n".join(input_list)
181
+ output_text = " <image>\n".join(output_list)
182
+
183
+ input_text = input_text + " <image>\n"
184
+
185
+ input_prompt = f"{instance['instruction']}\n {input_text}"
186
+
187
+ output_prompt = f"{output_text}"
188
+
189
+ conversations = [
190
+ {
191
+ "from": "human",
192
+ "value": input_prompt
193
+ },
194
+ {
195
+ "from": "gpt",
196
+ "value": output_prompt
197
+ }
198
+ ]
199
+
200
+ instance["conversations"] = conversations
201
+ output_data.append(instance)
202
+
203
+
204
+ print(len(output_data))
205
+ with open(output_path, 'w') as file:
206
+ json.dump(output_data, file, indent=4)