mrSoul7766 commited on
Commit
7e8c50e
1 Parent(s): 04ce331

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -255
README.md CHANGED
@@ -30,260 +30,6 @@ widget:
30
  example_title: "Premise and hypothesis"
31
 
32
  datasets:
33
- - svakulenk0/qrecc
34
- - taskmaster2
35
- - djaym7/wiki_dialog
36
- - deepmind/code_contests
37
- - lambada
38
- - gsm8k
39
- - aqua_rat
40
- - esnli
41
- - quasc
42
- - qed
43
-
44
-
45
  license: apache-2.0
46
  ---
47
-
48
- # Model Card for FLAN-T5 base
49
-
50
- <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/flan2_architecture.jpg"
51
- alt="drawing" width="600"/>
52
-
53
- # Table of Contents
54
-
55
- 0. [TL;DR](#TL;DR)
56
- 1. [Model Details](#model-details)
57
- 2. [Usage](#usage)
58
- 3. [Uses](#uses)
59
- 4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
60
- 5. [Training Details](#training-details)
61
- 6. [Evaluation](#evaluation)
62
- 7. [Environmental Impact](#environmental-impact)
63
- 8. [Citation](#citation)
64
- 9. [Model Card Authors](#model-card-authors)
65
-
66
- # TL;DR
67
-
68
- If you already know T5, FLAN-T5 is just better at everything. For the same number of parameters, these models have been fine-tuned on more than 1000 additional tasks covering also more languages.
69
- As mentioned in the first few lines of the abstract :
70
- > Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
71
-
72
- **Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [T5 model card](https://huggingface.co/t5-large).
73
-
74
- # Model Details
75
-
76
- ## Model Description
77
-
78
-
79
- - **Model type:** Language model
80
- - **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
81
- - **License:** Apache 2.0
82
- - **Related Models:** [All FLAN-T5 Checkpoints](https://huggingface.co/models?search=flan-t5)
83
- - **Original Checkpoints:** [All Original FLAN-T5 Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints)
84
- - **Resources for more information:**
85
- - [Research paper](https://arxiv.org/pdf/2210.11416.pdf)
86
- - [GitHub Repo](https://github.com/google-research/t5x)
87
- - [Hugging Face FLAN-T5 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/t5)
88
-
89
- # Usage
90
-
91
- Find below some example scripts on how to use the model in `transformers`:
92
-
93
- ## Using the Pytorch model
94
-
95
- ### Running the model on a CPU
96
-
97
- <details>
98
- <summary> Click to expand </summary>
99
-
100
- ```python
101
-
102
- from transformers import T5Tokenizer, T5ForConditionalGeneration
103
-
104
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
105
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
106
-
107
- input_text = "translate English to German: How old are you?"
108
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids
109
-
110
- outputs = model.generate(input_ids)
111
- print(tokenizer.decode(outputs[0]))
112
- ```
113
-
114
- </details>
115
-
116
- ### Running the model on a GPU
117
-
118
- <details>
119
- <summary> Click to expand </summary>
120
-
121
- ```python
122
- # pip install accelerate
123
- from transformers import T5Tokenizer, T5ForConditionalGeneration
124
-
125
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
126
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto")
127
-
128
- input_text = "translate English to German: How old are you?"
129
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
130
-
131
- outputs = model.generate(input_ids)
132
- print(tokenizer.decode(outputs[0]))
133
- ```
134
-
135
- </details>
136
-
137
- ### Running the model on a GPU using different precisions
138
-
139
- #### FP16
140
-
141
- <details>
142
- <summary> Click to expand </summary>
143
-
144
- ```python
145
- # pip install accelerate
146
- import torch
147
- from transformers import T5Tokenizer, T5ForConditionalGeneration
148
-
149
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
150
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto", torch_dtype=torch.float16)
151
-
152
- input_text = "translate English to German: How old are you?"
153
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
154
-
155
- outputs = model.generate(input_ids)
156
- print(tokenizer.decode(outputs[0]))
157
- ```
158
-
159
- </details>
160
-
161
- #### INT8
162
-
163
- <details>
164
- <summary> Click to expand </summary>
165
-
166
- ```python
167
- # pip install bitsandbytes accelerate
168
- from transformers import T5Tokenizer, T5ForConditionalGeneration
169
-
170
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
171
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto", load_in_8bit=True)
172
-
173
- input_text = "translate English to German: How old are you?"
174
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
175
-
176
- outputs = model.generate(input_ids)
177
- print(tokenizer.decode(outputs[0]))
178
- ```
179
-
180
- </details>
181
-
182
- # Uses
183
-
184
- ## Direct Use and Downstream Use
185
-
186
- The authors write in [the original paper's model card](https://arxiv.org/pdf/2210.11416.pdf) that:
187
-
188
- > The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models
189
-
190
- See the [research paper](https://arxiv.org/pdf/2210.11416.pdf) for further details.
191
-
192
- ## Out-of-Scope Use
193
-
194
- More information needed.
195
-
196
- # Bias, Risks, and Limitations
197
-
198
- The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf):
199
-
200
- > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
201
-
202
- ## Ethical considerations and risks
203
-
204
- > Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
205
-
206
- ## Known Limitations
207
-
208
- > Flan-T5 has not been tested in real world applications.
209
-
210
- ## Sensitive Use:
211
-
212
- > Flan-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech.
213
-
214
- # Training Details
215
-
216
- ## Training Data
217
-
218
- The model was trained on a mixture of tasks, that includes the tasks described in the table below (from the original paper, figure 2):
219
-
220
- ![table.png](https://s3.amazonaws.com/moonup/production/uploads/1666363265279-62441d1d9fdefb55a0b7d12c.png)
221
-
222
-
223
- ## Training Procedure
224
-
225
- According to the model card from the [original paper](https://arxiv.org/pdf/2210.11416.pdf):
226
-
227
- > These models are based on pretrained T5 (Raffel et al., 2020) and fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned Flan model per T5 model size.
228
-
229
- The model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax).
230
-
231
-
232
- # Evaluation
233
-
234
- ## Testing Data, Factors & Metrics
235
-
236
- The authors evaluated the model on various tasks covering several languages (1836 in total). See the table below for some quantitative evaluation:
237
- ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1668072995230-62441d1d9fdefb55a0b7d12c.png)
238
- For full details, please check the [research paper](https://arxiv.org/pdf/2210.11416.pdf).
239
-
240
- ## Results
241
-
242
- For full results for FLAN-T5-Base, see the [research paper](https://arxiv.org/pdf/2210.11416.pdf), Table 3.
243
-
244
- # Environmental Impact
245
-
246
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
247
-
248
- - **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4 | Number of chips ≥ 4.
249
- - **Hours used:** More information needed
250
- - **Cloud Provider:** GCP
251
- - **Compute Region:** More information needed
252
- - **Carbon Emitted:** More information needed
253
-
254
- # Citation
255
-
256
- **BibTeX:**
257
-
258
- ```bibtex
259
- @misc{https://doi.org/10.48550/arxiv.2210.11416,
260
- doi = {10.48550/ARXIV.2210.11416},
261
-
262
- url = {https://arxiv.org/abs/2210.11416},
263
-
264
- author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason},
265
-
266
- keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
267
-
268
- title = {Scaling Instruction-Finetuned Language Models},
269
-
270
- publisher = {arXiv},
271
-
272
- year = {2022},
273
-
274
- copyright = {Creative Commons Attribution 4.0 International}
275
- }
276
- ```
277
- ## Model Recycling
278
-
279
- [Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=9.16&mnli_lp=nan&20_newsgroup=3.34&ag_news=1.49&amazon_reviews_multi=0.21&anli=13.91&boolq=16.75&cb=23.12&cola=9.97&copa=34.50&dbpedia=6.90&esnli=5.37&financial_phrasebank=18.66&imdb=0.33&isear=1.37&mnli=11.74&mrpc=16.63&multirc=6.24&poem_sentiment=14.62&qnli=3.41&qqp=6.18&rotten_tomatoes=2.98&rte=24.26&sst2=0.67&sst_5bins=5.44&stsb=20.68&trec_coarse=3.95&trec_fine=10.73&tweet_ev_emoji=13.39&tweet_ev_emotion=4.62&tweet_ev_hate=3.46&tweet_ev_irony=9.04&tweet_ev_offensive=1.69&tweet_ev_sentiment=0.75&wic=14.22&wnli=9.44&wsc=5.53&yahoo_answers=4.14&model_name=google%2Fflan-t5-base&base_name=google%2Ft5-v1_1-base) using google/flan-t5-base as a base model yields average score of 77.98 in comparison to 68.82 by google/t5-v1_1-base.
280
-
281
- The model is ranked 1st among all tested models for the google/t5-v1_1-base architecture as of 06/02/2023
282
- Results:
283
-
284
- | 20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers |
285
- |---------------:|----------:|-----------------------:|--------:|--------:|--------:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|--------:|--------:|------------------:|--------:|--------:|------------:|--------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|-------:|--------:|----------------:|
286
- | 86.2188 | 89.6667 | 67.12 | 51.9688 | 82.3242 | 78.5714 | 80.1534 | 75 | 77.6667 | 90.9507 | 85.4 | 93.324 | 72.425 | 87.2457 | 89.4608 | 62.3762 | 82.6923 | 92.7878 | 89.7724 | 89.0244 | 84.8375 | 94.3807 | 57.2851 | 89.4759 | 97.2 | 92.8 | 46.848 | 80.2252 | 54.9832 | 76.6582 | 84.3023 | 70.6366 | 70.0627 | 56.338 | 53.8462 | 73.4 |
287
-
288
-
289
- For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
 
30
  example_title: "Premise and hypothesis"
31
 
32
  datasets:
33
+ - mrSoul7766/ECTSum
 
 
 
 
 
 
 
 
 
 
 
34
  license: apache-2.0
35
  ---