--- base_model: Weyaxi/Einstein-v4-phi2 datasets: - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - camel-ai/math - metaeval/reclor - openbookqa - mandyyyyii/scibench - derek-thomas/ScienceQA - TIGER-Lab/ScienceEval - jondurbin/airoboros-3.2 - LDJnr/Capybara - Cot-Alpaca-GPT4-From-OpenHermes-2.5 - STEM-AI-mtl/Electrical-engineering - knowrohit07/saraswati-stem - sablo/oasst2_curated - glaiveai/glaive-code-assistant - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - bigbio/med_qa - meta-math/MetaMathQA-40K - openbookqa - piqa - metaeval/reclor - derek-thomas/ScienceQA - scibench - sciq - Open-Orca/SlimOrca - migtissera/Synthia-v1.3 - TIGER-Lab/ScienceEval language: - en library_name: transformers license: other quantized_by: mradermacher tags: - axolotl - generated_from_trainer - phi - phi2 - einstein - instruct - finetune - chatml - gpt4 - synthetic data - science - physics - chemistry - biology - math --- ## About static quants of https://huggingface.co/Weyaxi/Einstein-v4-phi2 weighted/imatrix quants are available at https://huggingface.co/mradermacher/Einstein-v4-phi2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q2_K.gguf) | Q2_K | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q3_K_L.gguf) | Q3_K_L | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q6_K.gguf) | Q6_K | 2.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Einstein-v4-phi2-GGUF/resolve/main/Einstein-v4-phi2.f16.gguf) | f16 | 5.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.