mradermacher commited on
Commit
c6e7193
·
verified ·
1 Parent(s): a94c3ef

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md CHANGED
@@ -1,5 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  weighted/imatrix quants of https://huggingface.co/ryzen88/Llama-3-70b-Uncensored-Lumi-Tess-gradient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ryzen88/Llama-3-70b-Uncensored-Lumi-Tess-gradient
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ quantized_by: mradermacher
7
+ tags:
8
+ - uncencored
9
+ - llama-3
10
+ - tess
11
+ - lumimaid
12
+ - Lumi-tess
13
+ ---
14
+ ## About
15
+
16
  <!-- ### quantize_version: 2 -->
17
  <!-- ### output_tensor_quantised: 1 -->
18
  <!-- ### convert_type: hf -->
19
  <!-- ### vocab_type: -->
20
  weighted/imatrix quants of https://huggingface.co/ryzen88/Llama-3-70b-Uncensored-Lumi-Tess-gradient
21
+
22
+ <!-- provided-files -->
23
+ static quants are available at https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-GGUF
24
+ ## Usage
25
+
26
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
27
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
28
+ more details, including on how to concatenate multi-part files.
29
+
30
+ ## Provided Quants
31
+
32
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
33
+
34
+ | Link | Type | Size/GB | Notes |
35
+ |:-----|:-----|--------:|:------|
36
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | |
37
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better |
38
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality |
39
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better |
40
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better |
41
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better |
42
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality |
44
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality |
45
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended |
46
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | |
48
+ | [PART 1](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-70b-Uncensored-Lumi-Tess-gradient-i1-GGUF/resolve/main/Llama-3-70b-Uncensored-Lumi-Tess-gradient.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K |
49
+
50
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
51
+ types (lower is better):
52
+
53
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
54
+
55
+ And here are Artefact2's thoughts on the matter:
56
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
57
+
58
+ ## FAQ / Model Request
59
+
60
+ See https://huggingface.co/mradermacher/model_requests for some answers to
61
+ questions you might have and/or if you want some other model quantized.
62
+
63
+ ## Thanks
64
+
65
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
66
+ me use its servers and providing upgrades to my workstation to enable
67
+ this work in my free time.
68
+
69
+ <!-- end -->