mradermacher commited on
Commit
e1e46c7
1 Parent(s): da5c97f

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md CHANGED
@@ -1,6 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: barc0/Llama-3.1-ARC-Potpourri-Induction-8B
3
+ datasets:
4
+ - barc0/induction_heavy_100k_jsonl
5
+ - barc0/induction_heavy_suggestfunction_100k_jsonl
6
+ - barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3
7
+ - barc0/induction_100k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3
8
+ language:
9
+ - en
10
+ library_name: transformers
11
+ license: llama3.1
12
+ quantized_by: mradermacher
13
+ tags:
14
+ - alignment-handbook
15
+ - trl
16
+ - sft
17
+ - generated_from_trainer
18
+ - trl
19
+ - sft
20
+ - generated_from_trainer
21
+ ---
22
+ ## About
23
+
24
  <!-- ### quantize_version: 2 -->
25
  <!-- ### output_tensor_quantised: 1 -->
26
  <!-- ### convert_type: hf -->
27
  <!-- ### vocab_type: -->
28
  <!-- ### tags: -->
29
  static quants of https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
30
+
31
+ <!-- provided-files -->
32
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
33
+ ## Usage
34
+
35
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
36
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
37
+ more details, including on how to concatenate multi-part files.
38
+
39
+ ## Provided Quants
40
+
41
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
42
+
43
+ | Link | Type | Size/GB | Notes |
44
+ |:-----|:-----|--------:|:------|
45
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q2_K.gguf) | Q2_K | 3.3 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.8 | fast on arm, low quality |
51
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
52
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
53
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
54
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
55
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
56
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
57
+ | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
58
+
59
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
60
+ types (lower is better):
61
+
62
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
63
+
64
+ And here are Artefact2's thoughts on the matter:
65
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
66
+
67
+ ## FAQ / Model Request
68
+
69
+ See https://huggingface.co/mradermacher/model_requests for some answers to
70
+ questions you might have and/or if you want some other model quantized.
71
+
72
+ ## Thanks
73
+
74
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
75
+ me use its servers and providing upgrades to my workstation to enable
76
+ this work in my free time.
77
+
78
+ <!-- end -->