File size: 6,021 Bytes
e12dd42
 
 
 
 
 
 
 
 
316676d
 
 
 
 
 
e12dd42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800af78
e12dd42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [PART 1](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q2_K.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q2_K.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q2_K.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q2_K.gguf.part4of4) | Q2_K | 151.3 |  |
| [PART 1](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_XS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_XS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_XS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_XS.gguf.part4of4) | IQ3_XS | 168.2 |  |
| [PART 1](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_S.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_S.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_S.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_S.gguf.part4of4) | Q3_K_S | 177.2 |  |
| [PART 1](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_S.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_S.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_S.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.IQ3_S.gguf.part4of4) | IQ3_S | 177.7 | beats Q3_K* |
| [PART 1](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_M.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_M.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_M.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_M.gguf.part4of4) | Q3_K_M | 197.6 | lower quality |
| [P1](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_L.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_L.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_L.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_L.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q3_K_L.gguf.part5of5) | Q3_K_L | 215.3 |  |
| [P1](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q4_K_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q4_K_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q4_K_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q4_K_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Meta-Llama-3.1-405B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-405B-Instruct.Q4_K_S.gguf.part5of5) | Q4_K_S | 233.0 | fast, recommended |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->