Transformers
GGUF
English
mergekit
Merge
code
art
Cyber-Series
Inference Endpoints
conversational
mradermacher commited on
Commit
d32a3b9
·
verified ·
1 Parent(s): 1d4c739

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md CHANGED
@@ -1,6 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_CyberCoder_7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: LeroyDyer/Mixtral_AI_CyberCoder_7b
3
+ datasets:
4
+ - WhiteRabbitNeo/WRN-Chapter-1
5
+ - WhiteRabbitNeo/WRN-Chapter-2
6
+ - CyberNative/Code_Vulnerability_Security_DPO
7
+ language:
8
+ - en
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ quantized_by: mradermacher
12
+ tags:
13
+ - mergekit
14
+ - merge
15
+ - code
16
+ - art
17
+ - Cyber-Series
18
+ ---
19
+ ## About
20
+
21
  <!-- ### quantize_version: 2 -->
22
  <!-- ### output_tensor_quantised: 1 -->
23
  <!-- ### convert_type: hf -->
24
  <!-- ### vocab_type: -->
25
  <!-- ### tags: -->
26
  static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_CyberCoder_7b
27
+
28
+ <!-- provided-files -->
29
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
30
+ ## Usage
31
+
32
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
33
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
34
+ more details, including on how to concatenate multi-part files.
35
+
36
+ ## Provided Quants
37
+
38
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
39
+
40
+ | Link | Type | Size/GB | Notes |
41
+ |:-----|:-----|--------:|:------|
42
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q2_K.gguf) | Q2_K | 2.8 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
46
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ3_M.gguf) | IQ3_M | 3.4 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
51
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
52
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
54
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
55
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
56
+ | [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
57
+
58
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
59
+ types (lower is better):
60
+
61
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
62
+
63
+ And here are Artefact2's thoughts on the matter:
64
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
65
+
66
+ ## FAQ / Model Request
67
+
68
+ See https://huggingface.co/mradermacher/model_requests for some answers to
69
+ questions you might have and/or if you want some other model quantized.
70
+
71
+ ## Thanks
72
+
73
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
74
+ me use its servers and providing upgrades to my workstation to enable
75
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
76
+
77
+ <!-- end -->