--- base_model: 01-ai/Yi-34B datasets: - teknium/OpenHermes-2.5 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - yi - instruct - finetune - chatml - gpt4 - synthetic data - distillation --- ## About weighted/imatrix quants of https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-IQ2_M.gguf) | i1-IQ2_M | 12.5 | | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q2_K.gguf) | i1-Q2_K | 13.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 14.0 | fast, lower quality | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.8 | | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-IQ3_S.gguf) | i1-IQ3_S | 15.7 | fast, beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 17.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 20.2 | almost as good as Q4_K_M | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 21.3 | fast, medium quality | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/Nous-Hermes-2-Yi-34B-i1-GGUF/resolve/main/Nous-Hermes-2-Yi-34B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 25.0 | best weighted quant | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9