--- base_model: HPAI-BSC/Qwen2.5-Aloe-Beta-72B datasets: - HPAI-BSC/Aloe-Beta-General-Collection - HPAI-BSC/chain-of-diagnosis - HPAI-BSC/MedS-Ins - HPAI-BSC/ultramedical - HPAI-BSC/pubmedqa-cot-llama31 - HPAI-BSC/medqa-cot-llama31 - HPAI-BSC/medmcqa-cot-llama31 - HPAI-BSC/headqa-cot-llama31 - HPAI-BSC/MMLU-medical-cot-llama31 - HPAI-BSC/Polymed-QA - HPAI-BSC/Aloe-Beta-General-Collection - HPAI-BSC/Aloe-Beta-General-Collection language: - en library_name: transformers quantized_by: mradermacher tags: - biology - medical - healthcare --- ## About static quants of https://huggingface.co/HPAI-BSC/Qwen2.5-Aloe-Beta-72B weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-Aloe-Beta-72B-GGUF/resolve/main/Qwen2.5-Aloe-Beta-72B.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.