Transformers
GGUF
spectrum
sft
dpo
Inference Endpoints
conversational
File size: 3,831 Bytes
92b6707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e3af8
 
 
 
 
 
92b6707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dee447
 
92b6707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: VAGOsolutions/SauerkrautLM-v2-14b-DPO
datasets:
- VAGOsolutions/SauerkrautLM-Fermented-GER-DPO
- VAGOsolutions/SauerkrautLM-Fermented-Irrelevance-GER-DPO
language:
- de
- en
- it
- fr
- pt
- nl
- ar
- es
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- spectrum
- sft
- dpo
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q2_K.gguf) | Q2_K | 5.9 |  |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q3_K_S.gguf) | Q3_K_S | 6.8 |  |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q3_K_L.gguf) | Q3_K_L | 8.0 |  |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.IQ4_XS.gguf) | IQ4_XS | 8.3 |  |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q4_0_4_4.gguf) | Q4_0_4_4 | 8.6 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q5_K_S.gguf) | Q5_K_S | 10.4 |  |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q5_K_M.gguf) | Q5_K_M | 10.6 |  |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/SauerkrautLM-v2-14b-DPO-GGUF/resolve/main/SauerkrautLM-v2-14b-DPO.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->