File size: 4,846 Bytes
7315aac a3fd11b 7315aac a3fd11b 7315aac f68f768 7315aac f68f768 2bc9af9 c106666 47a8e8e 7315aac 47a8e8e c830b08 c106666 47a8e8e c830b08 c106666 47a8e8e a4e0429 d6b22ce c830b08 47a8e8e d6b22ce c7b42da 7315aac 2be5764 9a35155 7315aac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: SteelStorage/Umbra-v2.1-MoE-4x10.7
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- moe
- merge
- mergekit
- Solar Moe
- Solar
- Umbra
---
## About
weighted/imatrix quants of https://huggingface.co/SteelStorage/Umbra-v2.1-MoE-4x10.7
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ1_S.gguf) | i1-IQ1_S | 7.7 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ1_M.gguf) | i1-IQ1_M | 8.5 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.8 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.9 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ2_S.gguf) | i1-IQ2_S | 11.1 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ2_M.gguf) | i1-IQ2_M | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q2_K.gguf) | i1-Q2_K | 13.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 14.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.9 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ3_S.gguf) | i1-IQ3_S | 15.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ3_M.gguf) | i1-IQ3_M | 16.1 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q3_K_M.gguf) | i1-Q3_K_M | 17.5 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q3_K_L.gguf) | i1-Q3_K_L | 19.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-IQ4_XS.gguf) | i1-IQ4_XS | 19.5 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q4_0.gguf) | i1-Q4_0 | 20.7 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q4_K_S.gguf) | i1-Q4_K_S | 20.8 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q4_K_M.gguf) | i1-Q4_K_M | 22.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q5_K_S.gguf) | i1-Q5_K_S | 25.1 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q5_K_M.gguf) | i1-Q5_K_M | 25.9 | |
| [GGUF](https://huggingface.co/mradermacher/Umbra-v2.1-MoE-4x10.7-i1-GGUF/resolve/main/Umbra-v2.1-MoE-4x10.7.i1-Q6_K.gguf) | i1-Q6_K | 29.9 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|