--- base_model: 01-ai/yi-34b-200k datasets: - jondurbin/airoboros-3.2 - bluemoon-fandom-1-1-rp-cleaned - boolq - jondurbin/gutenberg-dpo-v0.1 - LDJnr/Capybara - jondurbin/cinematika-v0.1 - glaiveai/glaive-function-calling-v2 - grimulkan/LimaRP-augmented - piqa - Vezora/Tested-22k-Python-Alpaca - mattpscott/airoboros-summarization - unalignment/toxic-dpo-v0.2 exported_from: jondurbin/airoboros-34b-3.3 language: - en library_name: transformers license: other license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE license_name: yi-license quantized_by: mradermacher --- ## About static quants of https://huggingface.co/jondurbin/airoboros-34b-3.3 weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q2_K.gguf) | Q2_K | 13.5 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q3_K_S.gguf) | Q3_K_S | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.IQ3_S.gguf) | IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q3_K_M.gguf) | Q3_K_M | 17.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q3_K_L.gguf) | Q3_K_L | 18.8 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q4_K_S.gguf) | Q4_K_S | 20.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q4_K_M.gguf) | Q4_K_M | 21.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q5_K_S.gguf) | Q5_K_S | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q5_K_M.gguf) | Q5_K_M | 25.0 | | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q6_K.gguf) | Q6_K | 28.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/airoboros-34b-3.3-GGUF/resolve/main/airoboros-34b-3.3.Q8_0.gguf) | Q8_0 | 37.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.