File size: 3,721 Bytes
a39994d a252c90 a39994d 1cd9443 a39994d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
base_model: Andrewwwwww/aya-expanse-32b
extra_gated_fields:
Affiliation: text
Country: country
I agree to use this model for non-commercial use ONLY: checkbox
Name: text
extra_gated_prompt: By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and
acknowledge that the information you provide will be collected, used, and shared
in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll
receive email updates about C4AI and Cohere research, events, products and services.
You can unsubscribe at any time.
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
library_name: transformers
license: cc-by-nc-4.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Andrewwwwww/aya-expanse-32b
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/aya-expanse-32b-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q2_K.gguf) | Q2_K | 12.9 | |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q3_K_S.gguf) | Q3_K_S | 14.8 | |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q3_K_M.gguf) | Q3_K_M | 16.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q3_K_L.gguf) | Q3_K_L | 17.7 | |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.IQ4_XS.gguf) | IQ4_XS | 18.1 | |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q4_K_M.gguf) | Q4_K_M | 19.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q5_K_S.gguf) | Q5_K_S | 22.6 | |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q5_K_M.gguf) | Q5_K_M | 23.2 | |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q6_K.gguf) | Q6_K | 26.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/aya-expanse-32b-GGUF/resolve/main/aya-expanse-32b.Q8_0.gguf) | Q8_0 | 34.4 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|