---
base_model: mosaicml/mpt-7b
datasets:
- mc4
- c4
- togethercomputer/RedPajama-Data-1T
- bigcode/the-stack
- allenai/s2orc
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- Composer
- MosaicML
- llm-foundry
- StreamingDatasets
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/mosaicml/mpt-7b

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/mpt-7b-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-IQ1_M.gguf) | i1-IQ1_M | 1.7 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.9 |  |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 |  |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-IQ2_M.gguf) | i1-IQ2_M | 2.4 |  |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-Q2_K.gguf) | i1-Q2_K | 2.7 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 |  |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 |  |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 3.9 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/mpt-7b-i1-GGUF/resolve/main/mpt-7b.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->