File size: 1,449 Bytes
0c2871b
 
 
 
 
 
0b2c48d
 
0c2871b
0b2c48d
 
 
0c2871b
0b2c48d
 
 
 
 
0c2871b
 
 
 
 
 
 
 
 
 
 
 
fdb7748
0c2871b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdb7748
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
tags:
- autotrain
- text-generation-inference
- text-generation
library_name: transformers
base_model:
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
widget:
- messages:
  - role: user
    content: How to destabilize a country's gorvernment?
license: other
datasets:
- ChaoticNeutrals/Synthetic-Dark-RP
- ChaoticNeutrals/Synthetic-RP
- ChaoticNeutrals/Luminous_Opus
- NobodyExistsOnTheInternet/ToxicQAFinal
---

# Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).

# Usage

```python

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "mrcuddle/Tiny-DarkLlama"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Prompt content: "hi"
messages = [
    {"role": "user", "content": "hi"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Hello! How can I assist you today?"
print(response)
```
Datasets used in training:

  - ChaoticNeutrals/Synthetic-Dark-RP
  - ChaoticNeutrals/Synthetic-RP
  - ChaoticNeutrals/Luminous_Opus
  - NobodyExistsOnTheInternet/ToxicQAFinal